Проницаемость мембраны. Липидные поры: стабильность и проницаемость мембран

Способность веществ преодолевать мембранный барьер зависит прежде всего от их химической природы. Еще на заре ХХ в. английский ученый Дж. Овергон показал, что вещества, имеющие сродство к жирам (липофильные), легко проходят в клетку. Это объясняется их сродством к мембран­ному матриксу, состоящему из липидов. Гидрофильные веще­ства, в первую очередь вода, по-видимому, «протискиваются» через мембранные поры. Поэтому для их проникновения суще­ственное значение имеют размеры молекулы. Само понятие «поры» скорее всего является не структурным, а функциональным. Иными словами, пора - это не отверстие в мембране , а участок, обладающий гидрофильными свойствами и способный проводить гидрофильные вещества . В среднем размер такой поры 0,3-0,5 им. Лабильность структуры мембраны, обуслов­ленная слабыми связями между ее компонентами, приводит к тому, что поры могут менять расположение и размеры . Это объясняет изменчивость пропускной способности мембраны.

Все известные механизмы, обеспечивающие передвижение атомов, ионов или молекул между клеткой и средой, можно разделить на 2 категории: пассивный и активный транспорт .

К первой относятся процессы, про­исходящие по законам физики и химии . Направление движения молекул и ионов в этом случае определяется градиентами, существующими между клеткой и окружающей ее средой. Живая клетка не затра­чивает на транспорт веществ собственной энергии. Такой тип транспорта называется пассивным. Пассивный транспорт - это движение веществ по физико-химическим градиентам без затраты клеткой метаболической энергии - происходит как в живой, так и в неживой природе.

Одним из механизмов пассивного транспорта является диффузия . В газах и жидкостях молекулы и ионы находятся в постоянном движении благодаря кинетической энергии, которой обладают эти частицы. По второму закону термодинамики каждая система стремится уменьшить свою внут­реннюю энергию и увеличить энтропию. Поэтому в сообщаю­щихся растворах разных концентраций частицы растворенного вещества будут перемещаться из более концентрированного рас­твора в менее концентрированный. Одновременно из второго сосуда в первый на том же основании будут передвигать­ся молекулы растворителя. Процесс направленного передвижения молекул продолжится до тех пор, пока концентрация раство­ренного вещества в обеих частях системы не станет одинаковой. При этом энергия движущихся частиц в любой единице объема данной системы уравнивается - химический потенциал будет одинаков. Таким образом, движущей силой диффузии , происхо­дящей за счет тепловой энергии, является градиент концентра­ции (D с) или градиент химического потенциала (Dm ) данного вещества, который зависит от природы диффундирующего вещества (коэффициента диффузии). Это выражается уравнением Фика:где - число частиц, диффундирующих за единица времени (скорость диффу­зии). Д - коэффициент диффузии, - площадь поверхности диффузии, - ­градиент концентрации между двумя системами.

Пассивно вещества могут диффундировать:

через липидную фазу (растворимые в жирах),

по промежуткам между липидами,

с помощью липофильных переносчиков,

по специальным каналам (гидрофильные вещества)

под влиянием МП (электрофорез).

Если объемы с различными концентрациями не сообщаются, а разделены перегородкой, проницаемой для растворителя, но непроницаемой для растворенного вещества, то выравнивание концентраций будет происходить лишь за счет перемещения молекул растворителя. Такие перегородки называют полупроницае­мыми , а движение частиц через них - осмосом . Т.о., осмос - это одностороннее движение раство­рителя через полупроницаемую мембрану по градиенту концент­рации (химического потенциала) . Поскольку почвенный раствор всегда сильнее разбавлен (химический потенциал воды выше), чем раствор веществ в клетке, то вода поступает в клетку по законам осмоса.

Одной из форм пассивного транспорта является электрофорез - движение заряженных частиц за счет электрической энергии по градиенту электрического потенциала . Предположим, что две системы, (содержащие раствор электролита разделены мембраной, проницаемой для ионов. Поверхность мембраны, обращенная к первой системе, заряжена отрицательно по отношению к противоположной ее стороне, которая заряжена положительно. В результате этого под действием электродвижущей силы в обеих системах возникает направленный ток заряженных частиц - из первой системы во вторую будут перемещать анионы, из второй в первую - катионы.

Известно, что на клеточных мембранах генерируется и поддерживается электрический потенциал определенной величины - мембранный потенциал (МП). Внешняя мембрана растительной клетки - плазмалемма - имеет потенциал, равный в среднем -120...-150 мВ, МП тонопласта составляет -90..-120 мВ, хлоропластов -50...-70, митохондрий -120..-170 мВ, клеточная оболочка -50...-70 мВ. Знак «минус» перед цифрой, выражающей значение МП означает, что внутреннее содержимое нормально функционирующей клекки заряжено отрицательно по отношению к внешней среде. Составляющими электрического градиента на мембране являются диффузионный потенциал (обеспечивает 30-40 % значения МП), доннановский потенциал (10...-15 %) и активность электрогенных насосов в клетке (достигается 45-50 %).

Диффузионный потенциал возникает в результате различной проницаемости ионов через мембрана и, как следствие, градиента их активности между клеткой и средой.

Доннановский потенциал образуется за счет фиксированных зарядов , присущих находящимся в клетке молекулам белков, нуклеиновых кислот, пектиновых и других веществ.

Итак, реальной движу­щей силой ионов является градиент электрохимического потен­циала, который выражается в джоулях на моль.

Другая категория процессов транспорта веществ - активный транспорт - присуща только живым организмам, которые спо­собны осуществлять передвижение молекул и ионов против физико-химических градиентов . Для этого клетке необходимо затратить часть выработанной ею энергии, запасенной чаще всего в молекулах АТФ. Энергетические затраты клетки на активный транспорт веществ очень велики - они могут достигать 40 % всей энергии дыхания.

По современным данным, диффузия воды через липидный матрикс может осуществляться также с помощью кинкизомеров . Это длинные углеводородные цепочки остатков высших карбоновых кислот в жидком матриксе мембраны, которые находятся в постоянном тепловом движении. Если вокруг какой-либо С-С-связи в прямой углеводородной цепи произойдет поворот на 120°, то соседняя с ней С-С-связь также повернется на 120°, но в противоположном направлении. При этом образуется « излом », ограничивающий небольшой пустой объем, который не остается на месте, а перемещается вдоль цепи. В этом объеме, как в пакете, через мембрану могут проходить молекулы воды и некоторые растворенные вещества.

Минеральные элементы, находящиеся в окружающей среде (почве) в растворенном состоя­нии (в виде ионов), преодолевают мембрану в виде гидратированных в различной степени частиц. Молекулы воды, как известно, являются диполями и вследствие этого ориентируются вокруг положительно или отрицательно за­ряженных ионов соответствующими полюсами. Размеры гидратируемых частиц сильно увеличиваются, что препятствует их проникновению через поры мембраны. Чем более гидратирован ион, тем труднее ему преодолеть мембрану . Степень гидратации ионов зависит от их заряда и размеров атомного ядра . Гидрата­ционное число увеличивается в ряду катионов таким образом: калий - 4, натрий - 5, кальций - 10, магний - 13, алюминий - 21.

Движение ионов через мембраны связывают со специфическими молекулами-переносчиками - ионофорами . Действие ионофоров можно представить на примере функционирования антибиотиков - веществ, вырабатываемые некоторыми грибами и бакте­риями и действующих в очень низких концентрациях (10 -11 ...-10- 6 М). Антибиотик, продуцируемый бактериями Streptomices fulvissimus, - валиномицин - представляет собой циклический полипептид , почти не растворимый в воде. Сродство валиномицина к мембранному матриксу обеспечивается гидрофобными радикалами, расположенными на поверхности молекулы, в то время как на внутренней ее части имеются карбоксильные груп­пы, с атомами кислорода которых ион К + образует координа­ционные связи (рис.). Благодаря неполярному «чехлу» он благополучно преодолевает мембрану . Переносчик при этом может быть уподоблен челноку , курсирующему от одной поверх­ности мембраны к другой. Внутренний размер « молекулярного мешка » обеспечивает высокую избирательность к определенному иону . Так, валиномицин связывает и транспортирует ион К + в 1000 раз эффективнее, чем ион Na + .

Другой антибиотик - грамицидин - представляет собой ли­нейный полипептид, 2 молекулы которого образуют спирале­видный канал , в котором гидрофильные группы обращены внутрь, а гидрофобные - к мембранному матриксу. По гидро­фильному каналу происходит передвижение через мембрану ионов (рис.).

Способность антибиотиков наводить каналы ионной проводимости обусловливает их медицинское значение , так как является мощным средством ионного опустошения клеток патогенных микроорганизмов. Вследствие сильного повышения проницае­мости («продырявливания») клеточных мембран под действием антибиотиков происходит быстрая утечка K + и других важных элементов из клеток возбудителей болезней, в связи с чем наступает их гибель. На этом основан терапевтический эффект анти­биотиков в борьбе с инфекционными заболеваниями.

Фитопатогенные грибы способны вырабатывать весьма специфические вещества , с помощью которых они воздействуют на поражаемые растения , увеличивая проницаемость клеточных мембран, чем причиняют растительному организму вред. Идентификация мембранных переносчиков растений и изучение их действия для ученых-биологов - важная задача, решение которой может иметь практическое зна­чение.

Активный транспорт. Известно, что основные макро- и мик­роэлементы в нормальных условиях жизнедеятельности находятся в клетке в концентрациях, значительно превышающих их содержание в окружающей среде. Так как со стороны цитоплаз­мы мембраны заряжены отрицательно , анионы не могут поступать в клетку пассивно, поскольку и концентрационный и электрохимический компоненты движущей силы направлены не в клетку, а из нее. Тем не менее клетка поглощает NO 3 - , Н 3 РО 4 - и др. анионы. Следова­тельно, их транспорт в клетку представляет собой активный процесс, требующий затрат энергии.

Что касается катионов , то, хотя концентрационный градиент , как правило, направляет их движение из клетки в окружающую среду, электрическая составляющая движущей силы действует в противоположном направлении . В каждом конкретном случае направление пассивного тока катио­нов будет определяться соотношением двух сил - химической и электрической .

Для того чтобы решить, активно или пассивно движется ион и каково направление его движения - в клетку или из нее при конкретном соотношении концентраций иона в клетке и окружающей среде, используют упрощенное уравнение Нернста:

где - потенциал Нерста (МП), абсолютное значение; - ­валентность н заряд иона. с_- внутренняя концентрация иона: с - внешняя концентрация иона.

Зная величину МП, можно рассчитать каким должно быть соотношение внутренней н внешней концентрации данного иона при пассивное его перемещении за счет электрохимического градиента. Если реально найденное соотношение внутренней и внешней концентрации отличается от рас­четного, значит, клетка затрачивает метаболическую энергию на поглощение или на выделение данного иона, то есть осуществляет его активный транспорт.

На практике МП клетки измеряют с подошью электродов , представляющих собой тончайшие ка­пилляры, заполненные 3М КСl и открытые на концах. Один из капилляров погружен в окружающий раствор, а другой вводят в цитоплазму клетки с помощью микроманипулятора под микроскопом. С другой стороны эти электроды через хлорсеребряный или каломельный электрод присоединяют к высокоомному вольтметру, который и показывает величину МП. Концентрацию иона в окружающей среде измеряют стандартными методами. Для определения внутриклеточной концентрации либо получают экстракт из убитых тканей, либо при помощи центрифугирования выделяют из крупные клеток тонопласты с вакуолярным соком. В экстрактах или выделенных вакуолях концентрацию исследуемого иона измеряют обычными метода­ми.

В качестве критерия активности и пассивности ионного транспорта может быть использована его зависимость от уровня метаболизма клетки. Первые представления об активном транс­порте веществ связаны с именами американского ученого Д. Хогланда и выдающегося отечественного физиолога Л. А. Саби­нина.

Доказано, что движение ионов против электрохимического градиента стимулируется теми факторами , которые положитель­но влияют на дыхание и фотосинтез . Последние, как известно, являются источниками АТФ в живом клетке. К числу активаторов транспорта ионов относятся свет, температура, содержа­ние в среде кислорода , а в растении - углеводов (субстратов дыхания). С другой стороны, воздействие на растение дыха­тельных ядов сильно тормозит поглощение минеральных ве­ществ.

Системы, отвечаю­щие за передвижение ионов против электрохимического градиента, по-видимому, должны иметь сродство к мембранному матриксу ; быть достаточно структурно ла­бильными , чтобы осущест­влять передвижение какого-либо вещества; иметь участки, ответственные за специфичес­кое присоединение какого-­либо иона (молекулы); обла­дать АТФ-азной активностью , то есть способностью гидролизовать молекулу АТФ до АДФ и неорганического фос­фата с высвобождением энер­гии макроэргической связи, которая и обеспечивает транспорт иона.

Современные исследования мембран, позволяют выявить в них крупные глобулярные образования , которые представляют собой белки, часто имеющие четвертичную структуру. АКТИВНЫЙ транспорт веществ через мембраны связывают именно с этими БЕЛКОВЫМИ МОЛЕКУЛАМИ. Так как ионы активно «накачиваются» или «выкачиваются» клеткой, механизмы активного транспорта принято называть ионными насосами, помпами. В живой клетке функционируют насосы двух типов - электронейтральные и электрогенные .

Принцип работы электронейтрального насоса заключается в том, что он переносит через мембрану 2 иона одинакового заряда в противоположных направлениях . Поэтому в результате действия такого насоса заряд на мембране не изменяется . Механизмом подобного типа является натриево-калиевый насос . Одна из схем работы этого насоса выглядит следующим образом (рис.). Белок, отвечающий за транспорт Na + н K + , состоит из двух структурных компонентов. Первая субъединица пронизывает матрикс мембраны, образуя в ней ионный канал, по которому могут передвигаться ионы из клетки в среду и обратно. Во 2-й субъединице, находящейся на внутренней поверхности мембраны имеются участки, способные связывать Na + , K + и АТФ.

В результате гидролиза АТФ высвобождается энергия, за счет которой происходит поворот глобулы таким образом, что она оказывается в канале, сообщающемся с окружающей средой. В этот момент переносчик теряет способность связывать какие-либо ионы. Na + выходит наружу, а К + поступает в клетку. Далее белок возвращается в исходное, наиболее термо­динамически выгодное состояние. В этом положении к ион­ному каналу оказывается обращенным участок глобулы, спе­цифически связывающий K + , поступающий из окружающее среды. Исходное конформационное состояние глобулы обеспе­чивает присоединение к ней новых молекулы АТФ и иона Na + в соответствующих центрах. Начинается следующий цикл работы ионного насоса. Элект­рический заряд на мембране при этом не меняется.

Na/K АТФ-аза обнаружена в мембранах клеток многих жи­вотных организмов. Что касается растений, то все более очевидно присутствие в их мембранах подобных насосов. Профессором Д. Б. Вахмистровым достоверно показана работа Na+/K+ помпы у растений , приспособленных к жизни в условиях засоления , связана с необходимостью выкачивать избыток натрия. Возможно, Na + /K + АТФ-аза акти­вируется растительными клетками и в других крайних условиях, когда подавляется деятельность активных механизмов другого рода.

Работа электрогенного насоса заключается в том, что он переносит ион определенного заряда только в одну сторону, поэтому за счет его работы происходит генерация электричес­кого потенциала на мембране. Образующаяся таким образом электродвижущая сила обеспечивает перемещение ионов путем электрофореза . Универсальным для всех клеток механизмом подобного рода является протонная помпа (рис. 2). Встроен­ный в плазмалемму (и другие мембраны) белок, состоящий из нескольких субъединиц, осуществляет выброс протонов водо­рода за счет энергии гидролизуемой АТФ - первично активный транспорт . В результате этого на мембране генерируется электрохимический потенциал (Dm Н+ ), компонентами которого являются гра­диент электрического ( Dy ) и концентрационного ( D рН) по­тенциалов: (Dm Н+ = Dy + D рН). Электрический градиент обеспечивает движение в клетку катионов . Концентрационный градиент протонов опре­деляет их осмотический отток в клетку с помощью переносчиков. Этот обратный ток протонов может быть сопряжен с однонаправленным транспортом ионов (симпорт ), противоположно направленным таком катионов (антипорт ), а также совместным движением органических молекул (котранспорт ). Таким образом, потоки ионов и молекул в клетке опосредованы деятельностью протонной помпы и поэтому могут считаться вторично активным транспортом (рис.!).

Протонная помпа участвует: 1) в регуляции внутриклеточного рН; 2) создании МП; запасании и трансформации энергии; 3) мембранном и дальнем транспорте вв.; 4) поглощении МВ корнями; 5) росте и двигательной активности.

Клеточные мембраны

Клеточные мембраны

Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии - гидрофобным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны - молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны - цепочки олигосахаридов , формирующие гликокаликс

Биологическая мембрана включает и различные белки : интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов .

Функции биомембран

  • барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов . Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза .

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия , при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза , которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
  • механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных - межклеточное вещество.
  • энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса .

  • маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды , гликолипиды и холестерол . Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим - более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп ) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы , отделённые от гиалоплазмы мембранами . К одномембранным органеллам относятся эндоплазматическая сеть , аппарат Гольджи , лизосомы , вакуоли , пероксисомы ; к двумембранным - ядро , митохондрии , пластиды . Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза , аминокислоты , жирные кислоты , глицерол и ионы , причем сами мембраны в известной мере активно регулируют этот процесс - одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клеки наружу: диффузия , осмос , активный транспорт и экзо- или эндоцитоз . Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних - активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход . Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия .

Ссылки

  • Bruce Alberts, et al. Molecular Biology Of The Cell . - 5th ed. - New York: Garland Science, 2007. - ISBN 0-8153-3218-1 - учебник по молекулярной биологии на англ. языке
  • Рубин А.Б. Биофизика, учебник в 2 тт. . - 3-е издание, исправленное и дополненное. - Москва: издательство Московского университета, 2004. - ISBN 5-211-06109-8
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). - 1-е издание. - Москва: Мир, 1997. - ISBN 5-03-002419-0
  • Иванов В.Г., Берестовский Т.Н. Липидный бислой биологических мембран. - Москва: Наука, 1982.
  • Антонов В.Ф., Смирнова Е.Н., Шевченко Е.В. Липидные мембраны при фазовых переходах. - Москва: Наука, 1994.

См. также

  • Владимиров Ю. А., Повреждение компонентов биологических мембран при патологических процессах

Wikimedia Foundation . 2010 .

Смотреть что такое "Клеточные мембраны" в других словарях:

    У этого термина существуют и другие значения, см. Мембрана Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии гидрофобным «хвостам». На рисунке показаны… … Википедия

    - (от лат. membrana кожица, перепонка), сложные высокоорганизованные надмоле кулярные структуры, ограничивающие клетки (клеточные, или плазматич., мембраны) и внутриклеточные органоиды митохондрии, хлоропласты, лизосомы и др. Представляют собой… … Химическая энциклопедия

    У этого термина существуют и другие значения, см. Мембрана Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии гидрофобным «хвостам». На рисунке показаны… … Википедия

Прочитайте:
  1. А. Свойства и виды рецепторов. Взаимодействие рецепторов с ферментами и ионными каналами
  2. Абразивные материалы и инструменты для препарирования зубов. Свойства, применение.
  3. Адгезивные молекулы (молекулы суперсемейства иммуноглобулинов, интегрины, селектины, муцины, кадхерины): строение, функции, примеры. CD-номенклатура мембранных молекул клеток.
  4. Адгезивные системы. Классификация. Состав. Свойства. Методика работы. Современные взгляды на протравливание. Световая аппаратура для полимеризации, правила работы.
  5. Аденовирусы, морфология, культуральные, биологические свойства, серологическая классификация. Механизмы патогенеза, лабораторная диагностика аденовирусных инфекций.
  6. Альгинатные оттискные массы. Состав, свойства, показания к применению.
  7. Анатомия и гистология сердца. Круги кровообращения. Физиологические свойства сердечной мышцы. Фазовый анализ одиночного цикла сердечной деятельности
  8. Антибиотики, нарушающие функции цитоплазматической мембраны (ЦПМ) микроорганизмов
  9. Антитела (иммуноглобулины): структура, свойства. Классификация антител: классы, субклассы, изотипы, аллотипы, идиотипы. Закономерности биосинтеза.

Разные вещества проходят через мембрану с разной скоростью, поэтому мы говорим, что мембраны избирательно проницаемы. При этом скорость прохождения веществ меняется в зависимости от физиологического состояния клетки или органеллы.

Благодаря избирательной проницаемости они регулируют транспорт веществ между наружной средой и клеткой, между органеллами цитоплазмой и т. д.

Регулируя поступление веществ в клетку и их выведение, мембраны тем самым регулируют скорость и направление биохимических реакций, которые составляют основу обмена веществ организма. Сама избирательная проницаемость мембран зависит от обмена веществ в клетке.

Мембраны регулируют обмен веществ и другим способом – изменяя активность ферментов. Некоторые ферменты активны только тогда, когда они прикреплены к мембране, другие, наоборот, в этом состоянии не проявляют активности и начинают действовать только после того, как мембрана выпустит их на «свободу». Изменение проницаемости мембраны может способствовать контакту фермента с субстратом, после чего начинается химическая реакция, которая сначала была невозможна.

Мембранные ферменты работают хорошо только тогда, когда они находятся в контакте с липидами. В присутствии липидов может меняться форма молекул мембранных белков – ферментов, таким образом, что их активные центры становятся доступным для субстрата. Кроме того, локализация фермента на мембране определяет место данной реакции в клетке.

Другой важной стороной ферментативной деятельности мембран является координация химических реакций, проходящих в клетках. Когда несколько ферментов катализируют цепь реакций, в которой продукт первой реакции служит субстратом для другой и т. д., то эти ферменты располагаются на мембране в определенной последовательности, образуя мультиферментную систему. Таких систем в мембране много, например цепь дыхательных ферментов. В этом случае ферменты располагаются в строгой последовательности с минимальным расстоянием между ними.

Компартментализация клетки – необходимое условие для жизнедеятельности и одна из основных функций мембран. Во-первых, мембраны увеличивают внутреннюю поверхность клетки, на которой локализованы ферменты и проходят химические реакции. Во-вторых, разные компартменты отличаются по химическому составу. Далее, поскольку компартменты имеют различный химический состав в них проходят разные биохимические реакции, то с помощью мембран осуществляется физическое разделение метаболических процессов, часто противоположного направления. Например, синтез белков идет в рибосомах, а распад – в лизосомах. Каждый из этих процессов регулируется независимо один от другого. Приведем еще пример: синтез жирных кислот и их окисление. Первый процесс происходит в цитоплазме, второй – в митохондриях.

Однако метаболические системы не полностью изолированы одна от другой. В мембранах, разделяющих клетку на компартменты, имеются специализированные механизмы, которые транспортируют из одного в другой субстраты, продукты реакции, а также кофакторы и соединения, имеющие регуляторное действие. Таким образом, скорость отдельных метаболических процессов, которые происходят внутри компартментов, частично регулируются транспортными системами мембран.

Регуляция скорости метаболических процессов может происходить благодаря перемещению регулируемых веществ с одного компартмента в другой.

В разных компартментах имеются разные концентрации органических веществ, ионов, разный химический состав. Например, в вакуолях всегда находится запас аминокислот, органических кислот, сахаров, ионов. Это приводит к химической геторогенности в клетке. Неодинаковая концентрация ионов по обеим сторонам мембраны приводит к возникновению разности электрических потенциалов. Так плазмалемма несет отрицательный заряд, а тонопласт – положительный. Разные концентрации и химический состав обуславливают разную вязкость в разных частях цитоплазмы.

Обладая избирательной проницаемостью, пропуская в клетку необходимые вещества, мембраны выполняют еще одну функцию – регулируют гомеостаз. Гомеостазом называют свойство клетки (органеллы, органа, организма, экосистемы) поддерживать постоянство своей внутренней среды.

Почему внутренняя среда клетки должна оставаться постоянной? Мембранные белки и белки-ферменты относятся к глобулярным. Глобулярная нативная структура белковых молекул зависит от слабых связей, легко разрушаемым даже при малом изменении внутренней среды клетки. Таким образом, клетка должна поддерживать гомеостаз, чтобы не изменялась нативная структура белков. Если измениться третичная или четвертичная структура белка, то и фермент потеряет или изменит свою активность и нарушится строгое соответствие структуры фермента и субстрата, для того чтобы пошла реакция.

От структуры белковой молекулы зависит ее размещение в мембране, и, таким образом, ее свойства и функции. Изменение конформации белковых молекул может менять количество гидрофобных и гидрофильных радикалов на ее поверхности. Это приводит к изменению расположения белковых глобул в мембране. Последнее окажет влияние на ее избирательную способность и другие свойства, что, в свою очередь, вызовет нарушение геторогенности, исчезновению ферментов и может привести к гибели клетки.

Мембраны принимают участие в адаптации клетки к меняющимся условиям окружающей среде, о чем поговорим ниже.

Большая часть мембран, кроме общих функций, таких как регулирование обмена веществ, компартментизация, выполняют и специальные. Например, мембраны митохондрий и хлоропластов принимают непосредственное участие в синтезе АТФ. Жизнь – это беспрерывная работа, для выполнения которой все время необходимо расходовать энергию.

Таким образом, синтез АТФ необходим постоянно, он связан со строго определенной структурой мембран органелл (хлоропласты, митохондрии). Нарушение этой структуры приводит к снижению синтеза АТФ, а это значит – к смерти.

Лабильная структура мембран позволяет им выполнять разные функции: барьерные, транспортные осмотические, электрические, структурные, энергетические, биосинтетические, секреторные, рецепторно- регуляторные и некоторые другие.

В последнее время накапливается все больше данных, свидетельствующих о том, что некоторые мембраны образуются путем физического переноса мембранного материала от одних клеточных компонентов к другим. Есть данные, позволяющие считать ЭС источником тех строительных блоков, которые в конечном итоге включаются в плазмалемму. Возможно, это происходит в результате отшнуровывания пузырьков от цистерн Гольджи. По всей вероятности, в аппараты Гольджи совершается перестройка мембран двух типов: мембран, характерных для ЭС, в мембраны, свойственные плазмалемме.

В заключение укажем на основные свойства мембран:

1. Мембраны являются сложными структурами. Они состоят из структурных белков и липидов, но могут также включать высокоспецифические молекулы ферментов, пигментов и кофакторов.

2. Благодаря химической вариабильности составляющих мембраны молекул белков и липидов и в зависимости от их функций, различные мембраны могут иметь разную структуру.

3. Структура мембран обеспечивает высокую степень упорядоченности которой специфические молекулы могут образовывать комплексные функциональные единицы.

4. Ферментные реакции и другие процессы в мембранах могут приводить к пространственно направленным, или векторным, реакциям; мембраны асимметричны

Плазмолиз (от греч. plásma - вылепленное, оформленное и lýsis - разложение, распад) , отделение протопласта от оболочки при погружении клетки в гипертонический раствор.

Плазмолиз характерен главным образом для растительных клеток, имеющих прочную целлюлозную оболочку. Животные клетки при перенесении в гипертонический раствор сжимаются. В зависимости от вязкости протоплазмы, от разницы между осмотическим давлением клетки и внешнего раствора, а следовательно от скорости и степени потери воды протоплазмой, различают плазмолиз выпуклый, вогнутый, судорожный и колпачковый. Иногда плазмолизированные клетки остаются живыми; при погружении таких клеток в воду или гипотонический раствор происходит деплазмолиз.

Для сравнительной оценки плазмолиза в тканях существует два метода:

Метод пограничного плазмолиза
- Плазмометрический метод.

Первый метод, разработанный Хуго Де Фризом (1884), заключается в погружении тканей в растворы с различной концентрацией KNO3, сахарозы или другие осмотически активного вещества и установлении той концентрации, при которой плазмолизируется 50 % клеток. При плазмометрическом методе после плазмолиза измеряют относительный объём клетки и протопласта и по концентрации раствора вычисляют осмотическое давление клетки (по соответствующим формулам) .

Деплазмолиз (от де… и плазмолиз) - возвращение протопласта клеток растений из состояния плазмолиза в исходное состояние, характеризующееся нормальным тургором.

Деплазмолиз происходит при перенесении плазмолизированных клеток (то есть клеток, подвергшихся плазмолизу) в воду или гипотонические растворы.

Тургор (позднелат. turgor - вздутие, наполнение, от лат. turgere - быть набухшим, наполненным) , напряжённое состояние клеточной оболочки, зависящее от осмотического давления внутриклеточной жидкости (Р внутреннее) , осмотическое давления внешнего раствора (Р внешнее) и упругости клеточной оболочки (УО) . Обычно УО клеток животных (исключая некоторых кишечнополостных) невелика, они лишены высокого Т. и сохраняют целостность только в изотонических растворах или мало отличающихся от изотонических (разница между Р внутренним и Р внешним меньше 0,5-1,0 ам) . У живых растительных клеток Р внутреннее всегда больше Р внешнего, однако разрыва клеточной оболочки у них не происходит из-за наличия целлюлозной клеточной стенки. Разница между Р внутренним и Р внешним у растений (например, у растений галофитов, грибов) достигает 50-100 ам, но даже при этом запас прочности растительной клетки составляет 60-70%. У большинства растений относительное удлинение клеточной оболочки вследствие Т. не превышает 5- 10%, а тургорное давление лежит в пределах 5-10 ам. Благодаря Т. ткани растений обладают упругостью и конструктивной прочностью. Все процессы автолиза, увядания и старения сопровождаются падением Т.

Вода́ (оксид водорода) - бинарное неорганическое соединение, химическая формула Н 2 O. Молекула воды состоит из двух атомовводорода и одного - кислорода, которые соединены между собой ковалентной связью. При нормальных условиях представляет собой прозрачную жидкость, не имеет цвета (в малом объёме), запаха и вкуса. В твёрдом состоянии называется льдом (кристаллы льда могут образовывать снег или иней), а в газообразном - водяным паром. Вода также может существовать в виде жидких кристаллов (нагидрофильных поверхностях) . Около 71 % поверхности Земли покрыто водой (океаны, моря, озёра, реки, льды) - 361,13 млн км 2 . На Земле примерно 96,5 % воды приходится на океаны, 1,7 % мировых запасов составляют грунтовые воды, ещё 1,7 % на ледники и ледяные шапки Антарктиды и Гренландии, небольшая часть в реках, озёрах и болотах, и 0,001 % в облаках (образуются из взвешенных в воздухе частиц льда и жидкой воды) . Бо́льшая часть земной воды - солёная, и она непригодна для сельского хозяйства и питья. Доляпресной составляет около 2,5 %, причём 98,8 % этой воды находится в ледниках и грунтовых водах. Менее 0,3 % всей пресной воды содержится в реках, озёрах и атмосфере, и ещё меньшее количество (0,003 %) находится в живых организмах .

Является хорошим сильнополярным растворителем. В природных условиях всегда содержит растворённые вещества (соли, газы).

Вода имеет ключевое значение в создании и поддержании жизни на Земле, в химическом строении живых организмов, в формированииклимата и погоды. Является важнейшим веществом для всех живых существ на планете Земля .

Первая особенность: вода - единственное вещество на Земле (кроме ртути),
для которого зависимость удельной теплоемкости от температуры имеет
минимум.Из-за того, что удельная теплоемкость воды имеет
минимум около 37°С, нормальная температура человеческого тела,
состоящего на две трети из воды, находится в диапазоне температур
36°-38°С(внутренние органы имеют более высокую температуру, чем
наружные).

Вторая особенность: теплоемкость воды аномально
высока. Чтобы нагреть определенное ее количество на один градус,
необходимо затратить больше энергии, чем при нагреве других жидкостей, -
по крайней мере вдвое по отношению к простым веществам. Из этого
вытекает уникальная способность воды сохранять тепло. Подавляющее
большинство других веществ таким свойством не обладают. Эта
исключительная особенность воды способствует тому, что у человека
нормальная температура тела поддерживается на одном уровне и жарким
днем, и прохладной ночью.

Таким образом, вода играет
главенствующую роль в процессах регулирования теплообмена человека и
позволяет ему поддерживать комфортное состояние при минимуме
энергетических затрат. При нормальной температуре тела человек находится
в наиболее выгодном энергетическом состоянии.

Температура
других теплокровных млекопитающих (32-39°С) также хорошо соотносится с
температурой минимума удельной теплоемкости воды.

Третья
особенность: вода обладает высокой удельной теплотой плавления, то есть
воду очень трудно заморозить, а лед - растопить. Благодаря этому климат
на Земле в целом достаточно стабилен и мягок.

Все три особенности тепловых свойств воды позволяют человеку оптимальным
образом существовать в условия благоприятной среды.

выполняет транспортную функцию по «доставке» питательных веществ тканям и
органам при корневом и листовом питании, обмеенных процессах и синтезе,
- термолегулирующую, препятствующую перегреву тканей и денатурации
(разрушению) белков, в т. ч. ферментов и гормонов,
- является основной составляющей частью растительных организмов (на 80-90%
растения состоят из воды) , создающая тургор- упругость тканей,
- как источник элемента питания- водорода (Н) , необходимого в процессах
фотосинтеза первичных сахаров

Растительные клетки только на самой ранней стадии раз­вития бывают сплошь заполнены протоплазмой. Очень скоро в протоплазме начинают появляться полости, вакуоли – ре­зервуары с клеточным соком. Образование вакуолей обуслов­лено наличием в протоплазме веществ, сильно притягивающих воду. По мере роста и старения клетки отдельные вакуо­ли сливаются в одну сплошную полость, а протоплазма низ­водится до тонкого слоя, выстилающего клеточные стенки. Только тяжи и нити протоплазмы пересекают разросшуюся во всю клетку вакуолю.

Клеточный сок, находящийся в вакуолях, имеет сложный химический состав. В нем содержатся в растворенном виде минеральные соли, органические кислоты (щавелевая, яблоч­ная, лимонная, виннокаменная) и их соли, сахара, азотистые вещества, алкалоиды, глюкозиды, дубильные вещества и др.

В клеточном соке нередко встречаются красящие вещест­ва – пигменты (антоциан, реже антохлор). Окраска антоциана меняется в зависимости от реакции среды. При кислой она красная или фиолетовая, при щелочной – синяя.

Антоцианом окрашены корни свеклы, листья красной ка­пусты, фиолетовые, красные и синие лепестки цветков. Вто­рой растворимый пигмент антохлор тоже иногда встречается в лепестках и окрашивает их в желтый цвет.

От состава клеточного сока зависит полезность многих культурных растений. Сахаристость сахарной свеклы, слад­кий вкус арбуза и фруктов определяются клеточным соком. Живая клетка растений представляет собой осмотическую систему, где различные вещества направляются через мемб­раны от большей концентрации к меньшей до уравнива­ния их.

Когда клетка находится в воде или в очень слабом раство­ре солей (как почвенный раствор), вода поступает в клеточ­ный сок, вследствие чего вакуоля увеличивается в объеме, растягивает протоплазму и плотно прижимает ее к оболочке. Несколько растягивается и оболочка и находится, как гово­рят, в состоянии тургора (напряжения). При большом содер­жании в клетках сахара (плоды вишни, черешни, винограда) и обильном увлажнении (частые дожди) тургор может быть настолько большим, что клетки лопаются.

Обратное явление наблюдается при плазмолизе. Если жи­вую растительную клетку поместить в гипертонический рас­твор сахара или соли (более крепкий, чем клеточный сок), то вода будет выходить из клетки наружу, так как осмотиче­ская (притягивающая) сила такого раствора больше осмоти­ческой силы клеточного сока.

Особенно велико осмотическое давление у растений, про­израстающих в пустынях и на солончаках. Во многих слу­чаях оно достигает 50 и даже 100 атм. атм). По количественным показателям, основанным на концентра­ции, осмотическое давление у некоторых растений во много раз превышает давление пара в самых мощных локомотивах. В действительности клеткам приходится испытывать лишь разницу осмотических давлений клеточного сока и почвен­ных растворов, концентрация которых в почвах пустынь и солончаках большая.

Процесс поступления веществ в клетку называется эндоцитозом. Различают пиноцитоз и фагоцитоз.
Фагоцитоз (греч. фаго – пожирать) – поглощение клеткой твердых органических веществ. Оказавшись около клетки, твердая частица окружается выростами мембраны, или под ней образуется впячивание мембраны. В результате частица оказывается заключенной в мембранный пузырек внутри клетки. Такой пузырек называют фагосомой. Термин «фагоцитоз» был предложен И. И. Мечниковым в 1882 г. Фагоцитоз свойствен простейшим, кишечнополостным, лейкоцитам, а также клеткам капилляров костного мозга, селезенки, печени, надпочечников.
Второй способ поступления веществ в клетку называют пиноцитозом (греч. пино – пью) – это процесс поглощения клеткой мелких капель жидкости с растворенными в ней высокомолекулярными веществами. Осуществляется путем захвата этих капель выростами цитоплазмы. Захваченные капли погружаются в цитоплазму и там усваиваются. Явление пиноцитоза свойственно животным клеткам и одноклеточным простейшим.
Еще один способ поступления веществ в клетку – осмос – прохождение воды через избирательно проницаемую мембрану клетки. Вода переходит из менее концентрированного раствора в более концентрированный. Вещества могут также проходить через мембрану путем диффузии – так транспортируются вещества, способные растворяться в липидах (простые и сложные эфиры, жирные кислоты и т. д.) . Путем диффузии по градиенту концентрации по специальным каналам мембраны идут некоторые ионы (например, ион калия выходит из клетки) .
Кроме того, транспорт веществ через мембрану осуществляет натрий-калиевый насос: он перемещает ионы натрия из клетки и ионы калия в клетку против градиента концентраций с затратой энергии АТФ.
Фагоцитоз, пиноцитоз и натрий-калиевый насос – это примеры активного транспорта, а осмос и диффузия – пассивного транспорта

ВОДНЫЙ БАЛАНС РАСТЕНИЙ

Соотношение между количеством воды, которое растения получают, и количеством воды, которое они за тот же период времени расходуют.

Водный баланс и завядание. Одним из наиболее динамичных процессов в растении является водный обмен, который находится в тесной корреляций с другими процессами жизнедеятельности растения. Водный баланс - это поступление и расходование воды растением. При умеренной транспирации и достаточном поступлении воды в растение создается благоприятный водный баланс. В ясный солнечный день это равновесие нарушается и в растении возникает водный дефицит, который обычно составляет 5-10%. Такой дефицит считается вполне нормальным и не приносит особого вреда растению.

При интенсивной транспирации или иссушении почвы, когда поступление воды в растение прекращается, происходит значительная потеря растительными клетками воды, которая не пополняется поглощением ее из почвы, в результате чего образуется водный дефицит, часто наблюдаемый в наиболее жаркие часы суток у растений.

При водном дефиците листья теряют тургор, завядают, повисают.

Некоторые растения, имеющие в органах большое количестве механических тканей, например бессмертники (род. Helichrysum), не изменяют своего внешнего вида при водном дефиците, при значительной потере воды и даже при гибели.

Наблюдения показали, что обычно на рассвете внутренний градиент в растении и почве почти выравнивается, уравновешиваются водные потенциалы растения и почвы. В утренние часы, когда листья начинают транспирировать, водный потенциал становится несколько меньшим, чем на рассвете, однако поступление воды в растение начинается; когда создается необходимый градиент водных потенциалов от листьев к поверхности раздела корень-почва.

Завядание бывает временным и длительным.

Дата добавления: 2015-02-02 | Просмотры: 1801 | Нарушение авторских прав


| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 32 | | |

Одна из главных функций мембран - регуляция переноса веществ. Существуют два способа переноса веществ через мембрану: пассивный и активный транспорт

Транспорт веществ через мембраны

Пассивный транспорт . Если вещество движется через мембрану из области с высокой концентрацией в сторону низкой концентрации (т.е. по градиенту концентрации этого вещества) без затраты клеткой энергии, то такой транспорт называется пассивным, или диффузией . Различают два типа диффузии: простую и облегченную .

Простая диффузия характерна для небольших нейтральных молекул (H2O, CO2, O2), а также гидрофобных низкомолекулярных органических веществ. Эти молекулы могут проходить без какого-либо взаимодействия с мембранными белками через поры или каналы мембраны до тех пор, пока будет сохраняться градиент концентрации.

На первый взгляд представляется труднообъяснимым сравнительно большое значение Р для воды, полярного вещества, нерастворимого в липидах. Очевидно, что в этом случае речь может идти о переносе воды через наполненные водой белковые и липидные поры. Однако в последнее время помимо гидрофильных пор проникновение через мембрану мелких полярных молекул связывают с образованием между жирнокислотными хвостами фосфолипидных молекул при их тепловом движении небольших свободных полостей - кинков (от англ. kink - петля). Вследствие теплового движения хвостов молекул фосфолипидов кинки могут перемещаться поперек мембраны и переносить попавшие в них мелкие молекулы, в первую очередь молекулы воды.

Предполагается, что в растворе вне поры каждый ион имеет гидратную оболочку, состоящую из трех сферических слоев молекул воды. При вхождении в пору гидратированный ион "раздевается", теряя воду послойно. Пора будет проницаема для иона, если ее диаметр точно соответствует диаметру любой из этих сферических оболочек. Как правило, в поре ион остается с одной гидратной оболочкой. Отмечено своеобразное "квантование" гидратированных ионов по их размерам при прохождении через поры.

Облегченная диффузия . Характерна для гидрофильных молекул, которые переносятся через мембрану также по градиенту концентрации, но с помощью специальных мембранных белков - переносчиков. Для облегченной диффузии, в отличие от простой, характерна высокая избирательность, так как белок переносчик имеет центр связывания комплементарный транспортируемому веществу, и перенос сопровождается конформационными изменениями белка.

Другие отличия облегченной диффузии от простой :

1) перенос ионов с участием переносчика происходит значительно быстрее по сравнению со свободной диффузией;

2) облегченная диффузия обладает свойством насыщения - при увеличении концентрации с одной стороны мембраны плотность потока вещества возрастает лишь до некоторого предела, когда все молекулы переносчика уже заняты;

3) при облегченной диффузии наблюдается конкуренция переносимых веществ в тех случаях, когда одним переносчиком переносятся разные вещества; при этом одни вещества переносятся лучше, чем другие, и добавление одних веществ затрудняет транспорт других;

4) есть вещества, блокирующие облегченную диффузию, они образуют прочный комплекс с молекулами переносчика, препятствуя дальнейшему переносу.

Разновидностью облегченной диффузии является транспорт с помощью неподвижных молекул переносчиков, фиксированных определенным образом поперек мембраны. При этом молекула переносимого вещества передается от одной молекулы переносчика к другой по типу эстафеты.

Один из возможных механизмов облегченной диффузии может быть следующим: транспортный белок (транслоказа ) связывает вещество, затем сближается с противоположной стороной мембраны, освобождает это вещество, принимает исходную конформацию и вновь готов выполнять транспортную функцию. Мало известно о том, как осуществляется передвижение самого белка. Другой возможный механизм переноса предполагает участие нескольких белков-переносчиков. В этом случае первоначально связанное соединение само переходит от одного белка к другому, последовательно связываясь то с одним, то с другим белком, пока не окажется на противоположной стороне мембраны.

Активный транспорт (Рис. 12) имеет место в том случае, когда перенос осуществляется против градиента концентрации. Такой перенос требует затраты энергии клеткой. Активный транспорт служит для накопления веществ внутри клетки. Источником энергии часто является АТР. Для активного транспорта кроме источника энергии необходимо участие мембранных белков.

Одна из активных транспортных систем в клетке животных отвечает за перенос ионов Na+ и K+ через клеточную мембрану. Эта система называется Na+ - K+ - насос. Она отвечает за поддержание состава внутриклеточной среды, в которой концентрация К+ выше, чем Na+ :

Градиент концентрации калия и натрия поддерживается путем переноса К+ внутрь клетки, а Na+ наружу. Оба транспорта происходят против градиента концентрации. Такое распределение ионов определяет содержание воды в клетках, возбудимость нервных клеток и клеток мышц и другие свойства нормальных клеток. Na+ ,K+ -насос представляет собой белок – транспортную АТР-азу . Молекула этого фермента является олигомером и пронизывает мембрану. За полный цикл работы насоса из клетки в межклеточное вещество переносится три иона Na+, а в обратном направлении – два иона К+. При этом используется энергия молекулы АТР.

Существуют транспортные системы для переноса ионов кальция (Са2+ - АТР-азы), протонные насосы (Н+ - АТР-азы) и др.

Симпорт это активный перенос вещества через мембрану, осуществляемый за счет энергии градиента концентрации другого вещества. Транспортная АТР-аза в этом случае имеет центры связывания для обоих веществ. Антипорт - это перемещение вещества против градиента своей концентрации. При этом другое вещество движется в противоположном направлении по градиенту своей концентрации. Симпорт и антипорт могут происходить при всасывании аминокислот из кишечника и реабсорбции глюкозы из первичной мочи. При этом используется энергия градиента концентрации ионов Na+, создаваемого Na+, K+-АТР-азой.

Механизм действия Na+, K+-АТР-азы

Везикулярный транспорт

Через плазматическую мембрану транспортируются и макромолекулы. Процесс, с помощью которого клетки захватывают крупные молекулы, называется эндоцитозом. Процесс выхода крупных молекул из клетки называется экзоцитозом. Общим для этих видов транспорта является то, транспортируемое вещество окружено плазматической мембраной и находится в виде пузырька или везикулы . Механизм образования везикулы и её судьба в клетке зависит от типа эндоцитоза.

Эндоцитоз. Эндоцитоз можно разделить на 2 основных типа: фагоцитоз и пиноцитоз. Пиноцитоз присущ всем клеткам. С его помощью клетка поглощает жидкости и мелкие гранулы. При фагоцитозе происходит поглощение крупных частиц: вирусов, бактерий, клеток или их обломков. Фагоцитоз осуществляется с участием специализированных клеток: макрофагов и гранулоцитов.

Механизм эндоцитоза: при захвате вещества из межклеточного пространства происходит впячивание или инвагинация плазматической мембраны, образуется эндоцитозная везикула, похожая на колбу. Шейка везикулы сливается, отшнуровывается от мембраны и везикула – внутри клетки. Судьба везикул различна: они могут направляться к комплексу Гольджи или транспортируются к лизосомам, сливаются с ними, образуя вторичные лизосомы или фаголизосомы.

Эндоцитоз подразделяется 2 типа: жидкофазный неспецифичный и адсорбционный рецепторный (с очень быстрым избирательным захватом макромолекул). Название и судьба везикул, образующихся при адсорбционном эндоцитозе, зависят от типа поглощаемого вещества.

Экзоцитоз имеет большое значение для клетки. С его помощью клетка, например, обновляет свои мембраны, осуществляет секреторную деятельность. Механизм экзоцитоза: вещества в везикулах отпочковываются от комплекса Гольджи или от эндоплазматического ретикулума, транспортируются к мембране, сливаются с ней, после чего содержимое везикулы выполняет свое предназначение. Следует отметить, что экзоцитоз может быть непрерывным (конститутивным), так и регулируемым

Вещества, высвобождаемые в процессе экзоцитоза, можно разделить на 3 группы: 1.вещества, связывающиеся с клеточной поверхностью, например, антигены. 2.вещества внеклеточного матрикса, 3.сигнальные молекулы (гормоны, медиаторы).

Нарушение транспорта веществ через биомембраны приводит к различным патологиям. Лечение часто связано с проникновением лекарств через клеточные мембраны.

Механизм передачи сигнала. Существуют механизмы передачи сигнала а)связанные с поверхностными рецепторами клетки; б)не связанные с поверхностными рецепторами клетки.

Биохимический рецептор - структура живой клетки, как правило молекула белка, имеющая высокую степень сродства к определенным веществам – лигандам. Связывание лиганда с рецептором основано на том, что конформация какого-то участка молекулы гормона комплементарна участку молекулы рецептора. Связывание определяется гидрофобными и электростатическими взаимодействиями. В результате образуется комплекс вещество-рецептор

В числе переносчиков информации могут быть нейромедиаторы, гормоны, иммуноглобулины и другие вещества.

Первый этап в передаче информации - образование комплекс «лиганд-рецептор».

Второй этап в передаче информации - преобразование и проведение лигандного сигнала внутрь клетки. Этот процесс называется трансдукцией.

Механизмы передачи сигнала, связанные с поверхностными рецепторами клетки. Рецепторы этого семейства относятся к интегральным мембранным белкам.

Поверхностные рецепторы имеют три домена.

1. Ввнеклеточный домен или экто-домен

2. Трансмембранный домен, который может быть монотопным или политопным

3. Цитоплазматический домен.

Внеклеточный домен (экто -домен) содержит участок связывания сигнальной молекулы. Обычно это самая большая часть белкового рецептора.

Трансмембранные домены рецепторов можно разделить на две группы (рис.). Первое, очень большое семейство рецепторов, пронизывает мембрану семь раз. Это свойство настолько характерно для членов семейства, что их называют «семь раз пересекающими рецепторами», или «серпантинными» рецепторами. По общей структуре все члены семейства серпантинных рецепторов похожи, однако все они отличаются друг от друга но способности связывать различные классы лигандов. Другое, также большое семейство поверхностных рецепторов, имеет единственный трансмембранный участок.

Цитоплазматический домен

После связывания лиганда активируется именно цитоплазматический домен рецептора. У некоторых рецепторов этот домен обладает ферментативной активностью (например, киназной). У других - внутриклеточный домен сам служит субстратом для других ферментов (например, киназ), которые расположены вблизи него. После связывания с лигандом рецептор фосфорилируется и активируется. У ряда рецепторов цитоплазматический домен может быть связан (ассоциирован) с другими белками, например G-белками.

Рецепторы, сопряженные с G-белками. Связывание лиганда с рецептором приводит к активации специфических G-белков. Активированный G-белок изменяет активность молекулярных мишеней, в частности, аденилатциклазы, фосфорилазы, ионных каналов и cGMP-фосфодиэстеразы. "гримерныхгуанозинтрифосфатаз (ГТФазы)

Высокоспецифичные рецепторы этого семейства реагируют на:

  • гормоны (адреналин, глюкагон, лютеинизирующий гормон, антидиуретический гормон и т.д.)
  • нейромедиаторы (ацетилхолини т.д.)

Световые импульсы;

Летучие пахучие вещества и т.д. (таблица 1).

Таблица 1. Примеры G-белков и их физиологических эффектов

Тип клетки

Эффектор

Адреналин, глюкагон

Клетки печени

Аденилатциклаза

Расщепление гликогена

Адреналин, глюкагон

Адипоциты

Аденилатциклаза

Расщепление жиров

Лютеинизирующий

Фолликулы яичников

Аденилатциклаза

Усиление синтеза эстро-

гена и прогестерона

Антидиуретический

Клетки почек

Аденилатциклаза

Задержка воды почками

Ацетилхолин

Клетки сердечной

Калиевый канал

Брадикардия и снижение

насосной силы

Энкефалины, эндор-

Нейроны головного

Кальциевые и калиевые

Изменение электрической

фины,опиоиды

каналы, аденилатциклаза

активности нейронов

Ангиотензин

Гладкомышечные клет

Фосфолипаза С

Мышечное сокращение;

ки кровеносных сосудов

повышение артериально

го давления

Пахучие вещества

Нейроэпителиальные

Аденилатциклаза

Распознавание запаха"^ э

клетки носа

Палочки и колбочки

cGMP-фосфодиэстераза

Распознавание зритель*

сетчатки

ных сигналов

Особенности строения рецепторов, сопряженных с G-белками:

N-концевой участок находится на наружной стороне клеточной мембраны, белок семь раз прошивает мембрану, цитоплазматический домен содержит участки связывания G-белка.

G-белки – это тримеры, состоящие из 3-субъединиц, которые могут варьировать. Эти белки не входят в состав мембран, а соединяются с одной стороны с липидами цитоплазматической стороны мембраны, с другой – с цитоплазматическим доменом. В неактивном состоянии G-белки образуют комплекс с ГДФ.

Известны 6 различных моделей распознавания лигандов рецепторами, сопряженными с G-бслками. На первом рисунке слева (рис.) схематически изображена молекула родопсина, рецептора, реагирующего на свет. Остальные пять моделей показывают связывание лигапда с различными участками рецептора, с внутримембранными доменами (А, Г); с наружной поверхностью рецептора (Б); с большим внешним N-концсвым доменом (В), с небольшим участком внешнего N-концсвого домена (Г), и с новым N-копцевым доменом, сформированным при расщеплении исходной последовательности (Д)

На рисунке представлен рецептор (receptor),

G- белок в комплексе с ГДФ, молекулярная мишень (amplifier), в качестве которой могут выступать ферменты, (аденилатциклаза, фосфорилаза), ионные каналы и т.д.

Связывание гормона с рецептором приводит к изменению конформации рецептора и увеличению его сродства к G-белку.

Образование комплекса гормон-рецептор- G-белок - ГДФ снижает сродство a-протомера G-белка к ГДФ и увеличивает сродство к ГТФ. ГДФ заменяется на ГТФ. Это вызывает диссоциацию комплекса на a - субъединица и ГТФ и bg - димер.

a - субъединица - ГТФ связывается с молекулой –мишенью.

Связывание a - субъединица - ГТФ с мишенью стимулирует повышение ГТФазной активности a-протомера.

Дефосфорилирование ГТФ в активном центре a-протомера снижает его сродство к молекуле – мишени и увеличивает сродство к bg - протомерам. В результате происходит объединение трех протомеров G-белка.

Более подробно рассмотрим ответ 2 –х форм G-белковых рецепторов на связывание с лигандами на примере гормонов.

В первом случае молекулярной мишенью, функция которой меняется в ответ на присоединение гормона к рецептору, является аденилатциклаза (аденилатциклазная система).

Последовательность событий, приводящих к активации аденилатциклазы (рис.)

Связывание гормона с рецептором приводит к изменению конформации рецептора и увеличению его сродства к G-белку. G-белок состоит из 3 протомеров a,bg G-белка и образует комплекс ГДФ. В результате образуется тройной комплекс гормон – рецептор – G- белок + GDP.

2. Образование этого комплекса снижает сродство a-протомера G-белка к ГДФ и увеличивает сродство к ГТФ. ГДФ заменяется на ГТФ. Это вызывает диссоциацию комплекса на a - субъединица и ГТФ и bg - димер.

3. a - субъединица - ГТФ связывается с аденилатциклазой. Это вызывает изменение ее конформации и активацию фермента. В результате увеличивается скорость образования цАМФ из АТФ.

4. Молекулы сАМР могут обратимо соединяться с регуляторными субъединицами протеинкиназы А. Неактивная протеинкиназа А - это тетрамер, состоящий из 2 каталитических и 2 регуляторных субъединиц - C2R2.

5. Присоединение сАМР к субъединицам R приводит к диссоциации комплекса регуляторных и каталитических субъединиц. Активная форма ПКА – свободные каталитические субъединицы, которые фосфорилирует специфические белки, что вызывает изменение активности белков и регулируемых ими процессов.

5. Связывание a - субъединица - ГТФ с аденилатциклазой стимулирует повышение ГТФазной активности a-протомера.

6. Дефосфорилирование ГТФ в активном центре a-протомера снижает его сродство к АЦ и увеличивает сродство к bg - протомерам. В результате происходит объединение трех протомеров G-белка.

В втором случае молекулярной мишенью, функция которой меняется в ответ на присоединение гормона к рецептору, является фосфолипаза С нозитолфосфатная система).

Последовательность событий, приводящих к актвации фосфолипазы С (и нозитолфосфатная система):

1. Связывание гормона с рецептором приводит к изменению его конформации и увеличению сродства к Gplc (олигомер abg-субъединицы). ,

2. Образование комплекса, a - протомер + ГТФ и bg - димер

4. a - протомер + ГТФ взаимодействует с фосфолипазой С и активирует ее. Субстратом этого фермента являет фосфатидилинозитолбисфосфат (ФИФ).

5. В результате гидролиза образуется и выходи в цитозоль гидрофильное вещество инозитол – 3 фосфат. Другой продукт этой реакции диацилглицерин (ДАГ), остается в мембране и участвует в активации фермента протеин киназы С (ПКС).

6. Инозитол-3-фосфат связывается специфическими центрами Са-канала мембраны ЭР. В результате чего изменяется конформация и он открывается. Са 2+ поступает в цитозоль. В отсутствие в цитозоле инозитол-3-фосфата канал закрыт.

7. Повышение концентрации Са2+ в цитозоле клетки приводит к его взаимодействию с 1. с неактивным цитозольным ферментом прот еинкиназой С. 2. с белком кальмодулином.

Иными словами, сигнал принятый рецептором клетки, раздваивается.

8 Взаимодействие с ПНС Са2+ приводит к изменению конформации фермента: к увеличению сродства центров связывания фермента к липидам клеточной мембраны - ДАГ и фосфатидилсерину (ФС). На внутренней стороне мембраны образуется форменный комплекс - - активная протеинкиназа С, которая меняет активность специфических ферментов, фосфорилируя их по серину и треонину.

9. В клетках тканей присутствует белок кальмодулин, который функционирует как внутриклеточный рецептор Са2+, он имеет 4 центра для связывания Са2+. Комплекс не обладает ферментативной активностью, но взаимодействие комплекса с различными белками и ферментами приводит к их активации.

10. Для снижения концентрации Са2+ в клетке до исходного уровня работают системы Са2+-АТРаз и транслоказ (антипорт).

11. Присутствующий в цитозоле ИФ-3 и ДАГ в мембране могут в результате серии реакций опять превращаться в ФИФ. Активная ПКС стимулирует образование ФИФ.

цАМФ может проникать в ядро и активировать белки, называемые CREB (c AMP r esponse e lement b inding protein). Эти белки могут связываться со специфическими регуляторными элементами ряда генов и запускать процесс транскрипции.

2. Рецепторы как ионные каналы. Связывание лиганда с рецепторным белком канала вызывает открытие капала, приводящее к входу или выходу необходимых ионов. Все известные ионные каналы могут находиться в двух конформационных состояниях:

1. канал открыт и ионы перемещаются по градиенту концентрации;

2. канал закрыт и не пропускает ионы.

Особенности строения ионных каналов

Мембранные белки ионных каналов состоят из четырех субъединиц (I-IV), каждая из которых включает шесть альфа - спиральных доменов, пронизывающих клеточную мембрану. Кроме того, N- и С-концы обоих каналов находятся в цитоплазме.

Выделяют четыре типа ионных каналов в зависимости от стимула, регулирующего их открытие и закрытие. Кальциевые каналы относятся к каналам, управляемым лигандом. Ионный канал открывается благодаря энергии связывания с лигандом (А). В каналах, управляемых фосфорилированием (Б), открытие происходит благодаря присоединению к ним высокоэнергетического фосфата. Каналы, управляемые электрически (В), открываются при изменении мембранного электрического потенциала. Механически управляемые каналы открываются в ответ на растяжение или давление на мембрану клетки и цитоскелет (Г).

Активность разных каналов может изменяться также под воздействием не только метаболических факторов, но токсинов и лекарственных веществ. Некоторые иммунные заболевания, такие как злокачественная миастения, возникают в результате выработки специфических антител против канальных белков.

А. Управляемый лигандом

Б. Управляемый фосфорилированием

В. Управляемый электрически

Г. Управляемый механически

3. Каталитические рецепторы.

Их достаточно много. Эти рецепторы обладают ферментативной активностью. Пример (рис). Трансмембранный каталитический рецептор инсулина, обладающий ферментативной активностью. Рецептор инсулина представляет собой тирозиновую протеинкиназу (ТП), т.е. протеинкиназу, фосфорилирующую белки по OH-группам тирозина.

Рецептор состоит из 2a и 2 b-субъединиц, связанных дисульфидными связями и нековалентными взаимодействиями. Вне мембраны находятся a-субъединицы. Центр связывания инсулина образуют N-концевые домены a-субъединиц, а b-субъединицы пронизывающие мембранный бислой, не участвуют в связывании инсулина.

Каталитический центр тирозиновой протеинкиназы находится на внутриклеточных доменах b-субъединиц. Присоединение инсулина к центру связывания на a-субъединицах единицах активирует фермент, причем субстратам служит сама ТП, т.е. происходит аутофосфорилирование: Фосфорилируются b-субъединицы по нескольким тирозиновым остаткам. Это, в свою очередь, приводит к изменению субстратной специфичности ТП; теперь она способна фосфорилировать другие внутриклеточные белки. Активация и изменение специфичности обусловлена информационными изменениями рецептора инсулина после связывания инсулина и аутофосфорилирования. Фосфорилирование внутриклеточных белков, участвующих в регуляции клеточных процессов, меняет их активность.

Механизм передачи сигнала, не связанный с поверхностными рецепторами клетки.

К рецепторам, не связанным с поверхностью клетки, относится семейство липофильных рецепторов.

Лигандами этого семейства являются:

Стероиды, например, глюкокортикоиды, минералокортикоиды и половые стероиды;

Тиреоидный гормон, тироксин;

Витамин D и ретиноиды, большая группа молекул, структурно родственных витамину А

Эти лиганды достаточно липофильны для того, чтобы пройти через липидный бислой и войти в цитозоль. Пустые рецепторы этого семейства часто находятся в цитозоле, где образуют комплексы с другими белками, или на ядерной мембране.

Строение цитоплазматического рецептора.

Цитозольные рецепторы находятся в составе крупных белковых комплексов - шаперонов. Эти рецепторы тоже обладают тремя функциональными доменами: С-концевой домен связывает гормон, центральный домен связывается с короткой специфической областью ДНК в области промотора, N- концевой домен связывается с другими факторами транскрипции.

На рисунке показана модель взаимодействия цитоплазматического рецептора со специфическими последовательностями, расположенными на обеих цепях ДНК. В данном представлении гормон, связанный с рецептором, не виден.

Этапы передачи сигнала с помощью внутриклеточных рецепторов (на примере стероидных гормонов).

Связывание гормона с рецептором приводит к высвобождению шаперонов, затем гормон -рецепторный комплекс транспортируется в ядро и связывается со специфическими последовательностями ДНК - энхансером или сайленсером.

Увеличивается (при взаимодействии с энхансером) или уменьшается (при взаимодействии с сайленсером) сродство промотора к РНК-полимеразе. Соответственно увеличивается или уменьшается скорость транскрипции структурных генов. Увеличивается или уменьшается скорость трансляции.

Изменяется количество белков, которые могут влиять на метаболизм и функциональное состояние клетки. Эффекты гормонов, которые передают сигнал на внутриклеточные рецепторы, нельзя наблюдать сразу, так как на матричные процессы - транскрипцию и трансляцию - требуется несколько часов..

ПРОНИЦАЕМОСТЬ И ТРАНСПОРТ ВЕЩЕСТВ В БИОЛОГИЧЕСКИХ МЕМБРАНАХ

Проницаемость биологических мембран

Одна из важнейших функций биологической мембраны заключается в обеспечении обмена ионов и молекул между клеткой и окружающей средой. Способность биологических мембран пропускать через себя различные вещества называется проницаемостью . Изучение проницаемости клеток имеет большое значение, поскольку с данной функцией связаны практически все процессы жизнедеятельности клетки: метаболизм, генерация и проведение биопотенциалов, секреция, рецепция и т. д.

Транспорт веществ

Любая клетка очень точно поддерживает свой химический, в том числе и ионный состав. Постоянство ионного состава называется ионным гомеостазом и поддерживается за счёт транспорта веществ.

Транспорт веществ в организме можно разделить на три категории:

Дальний транспорт – перенос веществ между органами, его протяжённость в растениях может достигать нескольких десятков метров;

Ближний транспорт – перенос между соседними клетками;

Мембранный транспорт – перенос веществ через мембрану.

По энергетическим затратам мембранный транспорт можно разделить на 2 важнейших класса: активный и пассивный.

Пассивный транспорт не связан прямо с затратой химической энергии; он осуществляется в результате диффузии веществ в сторону меньшего электрохимического потенциала (где концентрация веществ и заряд меньше). Активный транспорт происходит при затрате химической энергии АТФ или переносе электрона по дыхательной цепи.


Виды пассивного транспорта веществ в клетках и тканях: диффузия, осмос.

Диффузия - основной механизм пассивного транспорта веществ, обусловленный наличием концентрационного градиента. Различают несколько видов диффузии:

1) простая диффузия, диффундирующее вещество движется по градиенту через мембрану, не образуя комплекса или проникая через канал;

2) облегченная диффузия , осуществляемая с помощью переносчиков - белков или молекулярных комплексов.

Простая диффузия- это самопроизвольный физический процесс проникновения вещества из области высокой в область меньшей его концентрации в результате теплового хаотического (броуновского) движения молекул.

С помощью простой диффузии через мембрану переносятся растворимые в липидах вещества, в частности такие хорошо растворимые в липидах и важнейшие для метаболического обмена вещества как кислород и углекислый газ. Через липидную фазу мембран в клетку могут проникать также яды и лекарства.

Математическое обоснование процесса диффузии впервые дал А. Фик. Согласно первому закону Фика поток вещества (J) прямо пропорционален градиенту концентрации dC/dx:

https://pandia.ru/text/78/170/images/image002_95.gif" width="433" height="56">

Учитывая это, формулу для потока вещества через мембрану можно записать в следующем виде:

https://pandia.ru/text/78/170/images/image004_68.gif" width="128" height="56">

Коэффициент проницаемости Р имеет размерность см/с и является количественной характеристикой способности конкретного вещества проникать через мембрану. Он аналогичен

коэффициенту диффузии (D), но зависит не только от природы вещества и температуры, но и от свойств мембраны.

DIV_ADBLOCK54">


Проникновение в клетку глюкозы, глицерина, аминокислот и некоторых других веществ не имеет линейной зависимости от их концентрации. Причем при определенных концентрациях скорость их проникновения значительно выше, чем при простой диффузии. Эта особенность объясняется тем, что в данном случае наблюдается не простая, а облегченная диффузия. Вещество самостоятельно диффундирует через мембрану, но скорость диффузии намного возрастает, если молекулы этого вещества образуют комплекс с молекулами переносчика, который хорошо растворяется в липидах. Молекулы-переносчики могут быть как подвижными, так и фиксированными в мембране - каналы .

Диффузия с участием переносчика, как и простая, происходит до тех пор, пока концентрация по обе стороны мембраны не станет одинаковой.

Разновидностью облегченной диффузии является так называемая обменная диффузия , при которой переносчик образует соединении с диффундирующим веществом и перемещается с ним от одной поверхности мембраны к другой, где молекула переносчика освобождается, ее место занимает другая молекула того же вещества и комплекс переносится обратно. При работе переносчиков в случае обменной диффузии концентрация веществ по обе стороны мембраны не изменяется. Существование обменной диффузии было доказано методом меченых атомов на эритроцитах, митохондриях и др.

Проникновение растворенных частиц, обладающих электрическим зарядом, через клеточную мембрану осуществляется по электрохимическому градиенту , а не по концентрационному.

Электрохимический потенциал – энергия, которую надо затратить для перемещения одного моля вещества из бесконечно удалённой точки пространства в данную точку с конкретными условиями.

Величина электрохимического потенциала описывается формулой:

где: - стандартный член;

Активность j-го иона

Химическая работа;

Парциальный моляльный обьем;

Механическая работа (работа по расширению объёиа)

Заряд иона;

Электрический потенциал;

Число Фарадея;

Электрическая работа.

Молекулы вещества всегда двигаются в сторону своего более низкого электрохимического потенциала.

Потенциал Нернста

Рассмотрим простую систему, представляющую собой два отсека, содержащие раствор соли (например, KCl) и разделённые мембраной, которая пропускает только катион, в нашем случае К+.

Растворы находятся в равновесии, это означает, что электрохимические потенциалы ионов в обоих отсеках одинаковы. Математически это будет выражаться уравнением:

Это уравнение, учитывая, что давления и моляльные объёмы вещества в обоих отсеках одинаковы, позволяет нам рассчитать разность электрических потенциалов между отсеками:

Это уравнение называется уравнением Нернста. Если учесть значения констант перед знаком логарифма, и вместо натуральных логарифмов использовать десятичные, то эту формулу можно записать в виде:

https://pandia.ru/text/78/170/images/image020_2.jpg" width="459" height="268">

Осмотическое давление раствора зависит от количества растворенных ионов и температуры. В соответствии с уравнением Вант-Гоффа осмотическое давление (π) раствора прямо пропорционально концентрации (С) растворенного вещества и абсолютной температуре раствора (T):

π = iRTC,

где i - изотонический коэффициент, зависящий от степени диссоциации электролита и показывающий, во сколько раз увеличивается количество растворенных частиц при диссоциации молекул; для неэлектролитов i = l, для электролитов i > 1; R - газовая постоянная.

Активный транспорт - движение против градиента электрохимического потенциала, осуществляемое с затратой химической энергии за счёт гидролиза АТФ или переноса электрона по дыхательной цепи.

Выделяют первично-активный и вторично-активный транспорт.

Рис. - Активный перенос ионов при работе транспортных АТФ-аз.

Транспорт называется первично-активным , если он осуществляется белками-переносчиками (они ещё называются ионными насосами), источником энергии для которых служат АТР, пирофосфат или субстраты, окисляемые в элек­трон-транспортных цепях митохондрий, хлоропластов.

Типичный пример первично-активного транспорта - активный транспорт ионов с помощью АТФ-аз.

Вторично-активным (сопряженным) транспортом называют процесс переноса ионов через мембрану против градиента его концентрации за счет энергии электро­химического градиента других ионов. Сопряженный транспорт может осуществлять­ся в режиме симпорта (оба иона переносятся через мембрану в одном направлении) или антипорта (ионы транспортируются в противоположных направлениях). Вторич­но-активный транспорт обеспечивает мембранный перенос моносахаридов, сахарозы, аминокислот, пептидов, анионов и ряда катионов. Для этой цели мембранные белки-переносчики чаще всего используют электрохимический градиент ионов водорода , со­здаваемый различными Н+-насосами.

Рис. - Сопряженный транспорт ионов и веществ через мембраны (Δφ - разность потенциалов, ΔрН - разность концентрации протонов)

Между пассивными и активными потоками в клетке существует взаимодействие, направленное на поддержание постоянства ионного состава клетки.

При блокировании энергетики клетки (пониженной температурой, ингибиторами, темнотой) интенсивность активного транспорта снижается, приток ионов из внешней среды уменьшается. Одновременно наблюдается возрастание электрического сопротивления мембраны в десятки раз. Это свидетельствует об уменьшении транспорта ионов по пассивным каналам, что предотвращает потерю ионов, находящихся в клетке.