Как работает понижающий dc преобразователь. Простенький регулируемый DC-DC преобразователь, или лабораторный блок питания своими руками V2

На китайских торговых площадках появится интересный модуль понижающего преобразователя напряжения XL4016. Схема позволяет работать с регулированием напряжения (CV) и тока (CC). После добавления в систему источника питания (например, ненужного блока питания ноутбука, трансформатора с выпрямителем и конденсатором) модуль можно использовать в качестве регулируемого БП, или стабилизатора с фиксированным выходным напряжением.

Схема позволяет установить максимальный выходной ток или работать как источник тока (CC). Работа в режиме CC может использоваться, например, для питания светодиодов, зарядки аккумулятора (в том числе автомобильного) или питания модуля Пельтье. Многооборотные потенциометры, установленные на плате, можно заменить на более крупные и удобные, оснащенные ручкой. Импульсная система имеет высокую эффективность, но при более высоких мощностях потребуется принудительная циркуляция воздуха или больший радиатор.

Схема подключения модуля DC-DC

Модуль инвертора можно найти на Алиэкспрессе, его описание часто содержит параметры 9 A 300 Вт, 1,2 — 35 В. Давайте подробнее рассмотрим возможности схемы этого преобразователя и проведём тесты. На радиаторах установлены двойной диод 10A STPS2045 и цепь понижающего инвертора XL4016. Обозначение входов и выходов питания и распределение потенциометров можно найти на рисунке ниже:

Полупроводники изолированы от радиаторов, что снижает риск коротких замыканий, но также может снизить эффективность рассеивания тепла. Согласно найденному даташиту, XL4016 в корпусе TO220 имеет предел по току 8 А, возможно, в модуле был использован элемент с большей заявленной эффективностью. Двухцветный светодиод меняет свой цвет с синего на красный при выходном токе >0,8 А. После замыкания выхода с помощью амперметра удалось отрегулировать выходной ток в режиме от CC до 9 A. Работа светодиодов очень удобна и информативна. Потребляемый ток без нагрузки около 15 мА.

Электролитические конденсаторы находятся достаточно близко к радиаторам и температура может уменьшить их срок службы, в то время как большая индуктивность просто висит в воздухе, так что ее стоит закрепить клеем, чтобы не повредить печатную плату во время механических воздействий. С другой стороны платы припаян стабилизатор 5В, LM358 и резистор, используемый при измерении выходного тока.

Испытания и тесты модуля XL4016

Стабильность выходного напряжения по сравнению с выходными токами является удовлетворительной, далее пример графика выходного напряжения, установленного на 3.3V в зависимости от тока нагрузки.

Влияние входного напряжения при установке выходного крайне мало.

Зависимость эффективности КПД преобразователя от изменения выходного тока для двух выходных напряжений.

Зависимость КПД от изменения входного напряжения.

Пульсации и отклонения выходного напряжения при разных условиях эксплуатации показаны на осциллограммах далее.

Применение понижающего преобразователя

Использован был этот модуль в качестве зарядного устройства для игрового ноутбука, он отлично работает и не нагревается критично. Вход: 29 В, выход 19 В, Imax 4 А в соответствии с параметрами исходного адаптера переменного тока 220 В.

Самый большой ток снимался с модуля работающего как блок питания для радиотелефона, на котором получалось 28 В и 9 A, что очень хорошо.

В качестве зарядного устройства он работает после добавления большого радиатора к XL или замены его на радиатор большего размера, чем заводской, плюс вентилятор, который также охлаждает конденсаторы.

Безопасный диапазон тока при длительной нагрузке составляет около 7 А, при напряжении выше 32 В стабилизатор очень горячий. Перед преобразователем хорошо будет поставить большой ёмкий конденсатор по питанию.

Пролог.

У меня есть два мультиметра, и оба имеют один и тот же недостаток – питание от батареи напряжением 9-ть Вольт типа «Крона».

Всегда старался иметь в запасе свежую 9-тивольтовую батарею, но, почему-то, когда требовалось что-то измерить с точностью выше, чем у стрелочного прибора, «Крона» оказывалась либо неработоспособной, либо её хватало всего на несколько часов работы.

Порядок намотки импульсного трансформатора.

Намотать прокладку на кольцевой сердечник столь малых размеров очень сложно, а мотать провод на голый сердечник неудобно и опасно. Изоляция провода может повредиться об острые грани кольца. Чтобы предотвратить повреждение изоляции, притупите острые кромки магнитопровода, как описано .

Чтобы во время укладки провода, витки не «разбегались», полезно, покрыть сердечник тонким слоем клея «88Н» и просушить до намотки.



Вначале мотаются вторичные обмотки III и IV (см. схему преобразователя). Их нужно намотать сразу в два провода. Витки можно закрепить клеем, например, «БФ-2» или «БФ-4».

У меня не нашлось подходящего провода, и я вместо провода расчётного диаметра 0,16мм использовал провод диаметром 0,18мм, что привело к образованию второго слоя в несколько витков.


Затем, так же в два провода, мотаются первичные обмотки I и II. Витки первичных обмоток также можно закрепить клеем.

Преобразователь я собрал методом навесного монтажа, предварительно связав х/б нитью транзисторы, конденсаторы и трансформатор.


Вход, выход и общую шину преобразователя вывел гибким многожильным проводом.


Настройка преобразователя.

Настройка может потребоваться для установки необходимого уровня выходного напряжения.

Я так подобрал количество витков, чтобы при напряжении на аккумуляторе 1,0 Вольт, на выходе преобразователя было около 7 Вольт. При этом напряжении, в мультиметре зажигается индикатор разряда батареи. Таким образом, можно предотвратить слишком глубокий разряд аккумулятора.

Если вместо предложенных транзисторов КТ209К будут использованы другие, тогда придётся подобрать количество витков вторичной обмотки трансформатора. Это связано с разной величиной падения напряжения на p-n переходах у различных типов транзисторов.

Я испытывал эту схему на транзисторах КТ502 при неизменных параметрах трансформатора. Выходное напряжение при этом снизилось на вольт или около того.

Также нужно иметь в виду, что база-эмиттерные переходы транзисторов одновременно являются выпрямителями выходного напряжения. Поэтому, при выборе транзисторов, нужно обратить внимание на этот параметр. То есть, максимально-допустимое напряжение база-эмиттер должно превышать необходимое выходное напряжение преобразователя.


Если генерация не возникает, проверьте фазировку всех катушек. Точками на схеме преобразователя (см. выше) отмечено начало каждой обмотки.


Чтобы не возникало путаницы при фазировке катушек кольцевого магнитопровода, примите за начало всех обмоток, например , все выводы выходящие снизу, а за конец всех обмоток, все выводы выходящие сверху.


Окончательная сборка импульсного преобразователя напряжения.

Перед окончательной сборкой, все элементы схемы были соединены многожильным проводом, и была проверена способность схемы принимать и отдавать энергию.


Для предотвращения замыкания, импульсный преобразователь напряжения был со стороны контактов заизолирован силиконовым герметиком.


Затем все элементы конструкции были размещены в корпусе от «Кроны». Для того, чтобы передняя крышка с разъёмом не утапливалась внутрь, между передней и задней стенками была вставлена пластинка из целлулоида. После чего, задняя крышка была закреплена клеем «88Н».


Для зарядки модернизированной "Кроны" пришлось изготовить дополнительный кабель со штекером типа Джек 3,5мм на одном из концов. На другом конце кабеля, для снижения вероятности короткого замыкания, были установлены стандартные приборные гнёзда, вместо аналогичных штекеров.

Доработка мультиметра.

Мультиметр DT-830B сразу же заработал от модернизированной «Кроны». А вот тестер M890C+ пришлось немного доработать.

Дело в том, что в большинстве современных мультиметров задействована функция автоматического отключения питания. На картинке показана часть панели управления мультиметра, где обозначена данная функция.


Схема автоотключения (Auto Power Off) работает следующим образом. При подключении батареи, заряжется конденсатор С10. При включении питания, пока конденсатор C10 разряжается через резистор R36, на выходе компаратора IC1 удерживается высокий потенциал, что приводит к отпиранию транзисторов VT2 и VT3. Через открытый транзистор VT3 напряжение питания и попадает в схему мультиметра.


Как видите, для нормальной работы схемы, нужно подать питание на С10 ещё до того, как включится основная нагрузка, что невозможно, так как наша модернизированная «Крона», напротив, включится только тогда, когда появится нагрузка.


В общем, вся доработка заключалась в установке дополнительной перемычки. Для неё я выбрал место, где это было сделать удобнее всего.

К сожалению, обозначения элементов на электрической схеме не совпали с обозначениями на печатной плате моего мультиметра, поэтому точки для установки перемычки нашёл так. Прозвонкой выявил нужный вывод выключателя, а шину питания +9V определил по 8-ой ножке операционного усилителя IC1 (L358).


Мелкие подробности.

Сложно было приобрести всего один аккумулятор. Их в основном продают, либо парами, либо по четыре штуки. Однако некоторые комплекты, например, «Varta», поставляются по пять аккумуляторов в блистере. Если Вам повезёт так же, как и мне, то Вы сможете разделить с кем-нибудь такой комплект. Аккумулятор я купил всего за 3,3$, тогда как одна «Крона» стоит от 1$ до 3,75$. Есть, правда, ещё «Кроны» и по 0,5$, но те и вовсе мёртворождённые.


Импульсные DC-DC преобразователи предназначены для как для повышения, так и для понижения напряжения. С их помощью можно с минимальными потерями преобразовать 5 вольт, например, в 12, или 24, либо и наоборот. Также существуют высоковольтные DC-DC преобразователи, они способны из относительно малого напряжения (5-12 вольт) получить весьма существенную разность потенциалов в сотни вольт. В этой статье рассмотрим сборку именно такого преобразователя, напряжение на выходе которого можно регулировать в пределах 60-250 вольт.


В её основе лежит распространённый интегральный таймер NE555. Q1 на схеме – полевой транзистор, можно использовать IRF630, IRF730, IRF740 или любые другие, рассчитанные на работу с напряжением выше 300 вольт. Q2 – маломощный биполярный транзистор, смело можно ставить BC547, BC337, КТ315, 2SC828. Дроссель L1 должен иметь индуктивность 100 мкГн, однако, если такого под рукой нет, можно ставить дроссели в пределах 50-150 мкГн, это не скажется на работе схемы. Легко изготовить дроссель самому – намотать 50-100 витков медного провода на ферритовое колечко. Диод D1 по схеме FR105, вместо него можно ставить UF4007 или любой другой быстродействующий диод на напряжение не меньше 300 вольт. Конденсатор С4 обязательно должен быть высоковольтным, как минимум 250 вольт, можно больше. Чем больше будет его ёмкость – тем лучше. Также желательно параллельно ему поставить плёночный конденсатор небольшой ёмкости для качественной фильтрации высокочастотных помех на выходе преобразователя. VR1 – подстроечный резистор, с помощью которого регулируется напряжение на выходе. Минимальное напряжение питания схемы – 5 вольт, самое оптимальное 9-12 вольт.

Изготовление преобразователя

Схема собирается на печатной плате размерами 65х25 мм, файл с рисунком платы к статье прилагается. Можно взять текстолит размером больше, чем сам рисунок, чтобы по краям осталось место для крепления платы в корпусе. Несколько фотографий процесса изготовления:




После травления плату обязательно нужно залудить и проверить на замыкание дорожки. Т.к. на плате присутствует высокое напряжение, между дорожками не должно быть никаких металлических заусенцев, иначе возможен пробой. В первую очередь на плату впаиваются мелкие детали – резисторы, диод, конденсаторы. Затем микросхема (её лучше установить в панельку), транзисторы, подстроечный резистор, дроссель. Для удобства подключения к плате проводов я рекомендую поставить винтовые клеммники, места для них на плате предусмотрены.



Скачать плату:

(cкачиваний: 260)

Первый запуск и настройка

Перед запуском обязательно нужно проверить правильность монтажа, прозвонить дорожки. Подстроечный резистор установить в минимальное положение (движок должен быть на стороне резистора R4). После этого можно подавать на плату напряжение, включив последовательно с ней амперметр. На холостом ходу ток потребления схемы не должен превышать 50 мА. Если он укладывается в норму, можно аккуратно поворачивать подстроечный резистор, контролируя напряжение на выходе. Если всё нормально – подключить к высоковольтному выходу нагрузку, например, резистор 10-20 кОм и ещё раз протестировать работу схемы, уже под нагрузкой.
Максимальный ток, который может выдать такой преобразователь составляет примерно 10-15 мА. Использовать его можно, например, в составе ламповой техники для питания анодов ламп, либо же зажигать газоразрядные или люминесцентные индикаторы. Основной вариант применения – миниатюрный электрошокер, ведь напряжение 250 вольт на выходе ощутимо для человека. Удачной сборки!

Это DC-DC преобразователь напряжения с 5-13 В на входе, до 12 В выходного постоянного тока 1,5 А. Преобразователь получает меньшее напряжение и дает более высокое на выходе, чтобы использовать там где есть напряжение меньшее требуемых 12 вольт. Часто он используется для увеличения напряжения имеющихся батареек. Это по сути интегральный DC-DC конвертер. Для примера: есть литий-ионный аккумулятор 3,7 В, и его напряжение с помощью данной схемы можно изменить, чтобы обеспечить необходимые 12 В на 1,5 А.

Преобразователь легко построить самостоятельно. Основным компонентом является микросхема MC34063, которая состоит из источника опорного напряжения (температурно-компенсированного), компаратора, генератора с активным контуром ограничения пикового тока, вентиля (элемент "И"), триггера и мощного выходного ключа с драйвером и требуется только несколько дополнительных электронных компонентов в обвязку для того чтобы он был готов. Эта серия микросхем была специально разработана, чтобы включены их в состав различных преобразователей.

Достоинства микросхемы MC34063A

  • Работа от 3 до 40 В входа
  • Низкий ток в режиме ожидания
  • Ограничение тока
  • Выходной ток до 1,5 A
  • Выходное напряжение регулируемое
  • Работа в диапазоне частот до 100 кГц
  • Точность 2%


Описание радиоэлементов

  • R - Все резисторы 0,25 Вт.
  • T - TIP31-NPN силовой транзистор. Весь выходной ток проходит через него.
  • L1 - 100 мкГн ферритовые катушки. Если придётся делать самостоятельно, нужно приобрести тороидальные ферритовые кольца наружным диаметром 20 мм и внутренним диаметром 10 мм, тоже 10 мм высотой и проволоку 1 - 1,5 мм толщиной на 0,5 метра, и сделать 5 витков на равных расстояниях. Размеры ферритового кольца не слишком критичны. Разница в несколько (1-3 мм) приемлема.
  • D - диод Шоттки должен быть использован обязательно
  • TR - многовитковый переменный резистор, который используется здесь для точной настройки выходного напряжения 12 В.
  • C - C1 и C3 полярные конденсаторы, поэтому обратите внимание на это при размещении их на печатной плате.

Список деталей для сборки

  1. Резисторы: R1 = 0.22 ом x1, R2 = 180 ом x1, R3 = 1,5 K x1, R4 = 12K x1
  2. Регулятор: TR1 = 1 кОм, многооборотный
  3. Транзистор: T1 = TIP31A или TIP31C
  4. Дроссель: L1 = 100 мкГн на ферритовом кольце
  5. Диод: D1 - шоттки 1N5821 (21V - 3A), 1N5822 (28V - 3A) или MBR340 (40В - 3A)
  6. Конденсаторы: C1 = 100 мкФ / 25V, C2 = 0.001 мкФ, C3 = 2200 мкФ / 25V
  7. Микросхема: MC34063
  8. Печатная плата 55 x 40 мм


Заметим, что необходимо установить небольшой алюминиевый радиатор на транзистор T1 - TIP31, в противном случае этот транзистор может быть поврежден из-за повышенного нагрева, особенно на больших токах нагрузки. Даташит и рисунок печатной платы


Сегодня мы рассмотрим инструкцию пошагового создания универсального DC DC преобразователя. Для чего нужен он нужен?

Чтобы полноценно ответить на этот вопрос, ознакомимся с характеристиками:

Входное напряжение 10–25В
Выходное напряжение 0–30В
Выходной ток до 2А (тут есть некоторые особенности, их затронем при расчете дросселя)

Как видим из характеристик, такой преобразователь можно использовать в автомобиле для повышения или понижения напряжения 12В. Также можно подключить такой самодельный DC DC преобразователь на выход компьютерного блока питания и без переделки получать с него разные напряжения.

Ну или же можно взять блок питания от ноутбука и опять же получать на выходе любое напряжение. Это очень удобно, поскольку не нужно заботиться о питающем напряжении.

Повышающий/понижающий DC DC преобразователь - схема


Тут у нас всем знакомая tl494, ей уже много лет, но она до сих пор не сдает свои позиции.

К слову, мы уже рассматривали, как создать .

Сначала была идея создать DC DC преобразователь на UС3843, но она оказалась неудачной. Плюс если делать регулировку по току, то нужно ставить второй шунт, а это снижает итоговый КПД устройства.

В изделии по схеме есть регулировка напряжения, тока, а также установлен драйвер полевика. С ним немного уменьшился нагрев.


Также можно увидеть, что ограничена максимальная ширина выходного импульса, так как при максимальном заполнении схема уходила в непонятный режим, жрала много тока, но на выходе напряжение падало.


Максимальное выходное напряжение равняется 30В.


Если нужно больше, то придется пересчитать номинал вот этих резисторов:


Причем с таким расчетом, чтобы при нужном выходном напряжении в точке делителя было 5В.


Также у нас ограничен ток, он составляет 2А. Если нужно больше, то необходимо пересчитать вот этот резистор:


Тут уже немного сложнее. Для начала необходимо выяснить сколько вольт упадет на шунте. К примеру, нам нужен ток 4А. Тогда смотрим, при каком токе на резисторе упадет 0,4В.


Теперь пересчитываем резистор. Нужно, чтобы в точке деления переменного и постоянного резистора, напряжение было 0,4В. Для этого можно воспользоваться онлайн-калькулятором.


Схему и печатную плату можно скачать ниже.

Файлы для скачивания:

Принцип работы DC DC преобразователя по схеме

Точка отсчета - устройство выключено.


Подаем питание. Ключ разомкнут, а значит ток течет через катушку индуктивности, конденсатор и диод прямо в нагрузку и выходной конденсатор.


Дальше происходит замыкание ключа. В этот момент в катушке L1 накапливается энергия. Проходной конденсатор был заряжен напряжением питания, и поскольку после замыкания ключа он оказывается включенным параллельно индуктивности L2, то он ее заряжает. Напряжение с L2 не может уйти в нагрузку, так как там стоит диод и у него на катоде напряжение выше, чем на аноде.


Теперь ключ снова размыкаем, и напряжение на L1 складывается с напряжением самоиндукции.


Таким образом, на проходной конденсатор и нагрузку идет уже повышенное напряжение.


Изменяя коэффициент заполнения ШИМ, мы изменяем выходное напряжение.


Если ширина импульса достаточно маленькая, то и величина самоиндукции меньше, а, следовательно, выходное напряжение уменьшается. Преимущество такой схемы перед обыкновенным повышающим DC DC преобразователем в том, что здесь установлен проходной конденсатор, который в случае короткого замыкания не даст выйти из строя схеме.

Монтаж повышающего/понижающего DC DC преобразователя своими руками

Как уже говорилось выше, некоторые компоненты схемы необходимо рассчитать, благо в сети есть много готовых онлайн калькуляторов.

  • Смотрите также
Как же в реальной жизни их намотать катушки с нужной индуктивностью? Те, у кого есть ESR метр скажут, что тут нет ничего сложного, мотаешь и смотришь параметры.


Но этот ESR метр показывает с очень большой погрешностью, поэтому предлагает воспользоваться программой DrosselRing. В ней вводим все необходимые параметры, а также указываем какой у нас сердечник. Если никаких нет под рукой, то достаем 2 одинаковых желтых кольца из компьютерного блока питания.


Ну и осталось намотать наши дроссели, это уже не составит особого труда.


Получилось довольно-таки неплохо. Казалось бы, все сложности уже позади, но нет, впереди еще разводка печатной платы DC DC. Преобразователя. Чтобы максимально компактно расположить все элементы, понадобится немало времени.


Для крепления можно сделать плату немного больше и добавить по бокам отверстия, но это уже на ваше усмотрение.


Плата готова, просверлены отверстия, настала очередь запайки. Тут есть один важный момент: необходимо поднять силовые элементы выше над платой, так как потом их невозможно будет достать отверткой.


Теперь необходимо установить транзистор и диод на радиатор. Мы используем вот такой алюминиевый профиль, он имеет неплохие габариты и сможет нормально охлаждать схему.