Презентация по химии: «Скорость химических реакций. История развития аналитической химии - презентация Значение скорости реакций в аналитической химии презентация

Таблица Менделеева уже снится Вам в страшных снах? А уравнения реакций образовали в голове не чистые растворы, а абсолютный хаос? Не стоит раньше времени беспокоиться! Химия - наука непростая и точная, требует внимания для ее понимания, а в учебниках часто пишут непонятными текстами, которые все усложняют. На помощь Вам придут презентации по химии - информативные, структурированные и простые. Вы не просто будете знать все формы, которые может принимать вода, но и сможете увидеть их и точно запомнить. Отныне формулы и уравнения будут для вас понятными, а решения задач не будет создавать проблем. Кроме того, яркой презентацией Вы легко поразите одноклассников и учителя, что позволит Вам получить наивысшие баллы на уроке. Ваши знания по химии будут блестящими, и презентации по химии, которые можно скачать бесплатно на нашем ресурсе, станут ювелирами в огранке Ваших знаний.

Прекрасными компаньонами в изучении естественных дисциплин станут также презентации по биологии: связь этих смежных великих наук трудно проигнорировать.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Скорость химических реакций Химическая кинетика изучает скорость и механизмы химических реакций

Гомогенные и гетерогенные системы Гетерогенные системы Фаза – совокупность всех гомогенных частей системы, одинаковых по составу и по всем физическим и химическим свойствам и отграниченных от других частей системы поверхностью раздела. Гомогенные системы состоят из одной фазы

Скорость химических реакций (для гомогенных систем) A + B = D + G C 0 = 0 ,5 моль/л C 1 = 5 моль/л  t = 10 c

Скорость химических реакций (для гомогенных систем) A + B = D + G C 0 = 2 моль/л C 1 = 0,5 моль/л  t = 10 c (для гетерогенных систем)

Факторы, от которых зависит скорость реакции Природа реагирующих веществ Концентрация веществ в системе Площадь поверхности (для гетерогенных систем) Температура Наличие катализаторов Опыт: влияние концентрации Опыт: щелочные металлы реагируют с водой Рубидий и цезий с водой

Влияние температуры Правило Вант-Гоффа При нагревании системы на 10 ˚С скорость реакции возрастает в 2-4 раза - температурный коэффициент Вант-Гоффа Якоб Вант-Гофф (1852-1911)

Катализ Йенс Якоб Берцелиус ввел термин « катализ » в 1835 г. Катализатор – вещество, изменяющее скорость реакции, участвует в промежуточных стадиях реакции, но не входит в состав продуктов реакции. 2SO 2 (г.) + O 2 (г.) 2SO 3 (г.) 2) SO 2 (г.) + NO 2 (г.)  SO 3 (г.) + NO (г.) 1) 2 NO (г.) + O 2 (г.)  2NO 2 (г.) Вильгельм Оствальд 1909 г. – Нобелевская премия «в признание работ по катализу»

Механизм разложения пероксида водорода 2 H 2 O 2 = 2H 2 O + O 2 (1) H 2 O 2 = H + + HO 2 - (2) HO 2 - + H 2 O 2 = H 2 O + O 2 + OH - (3) OH - + H + = H 2 O Посмотрите опыт «Разложение пероксида водорода» Перейти к теме «катализ»

Разложение H 2 O 2 в присутствии Fe 3+ H 2 O 2 = H + + HO 2 - HO 2 - + Fe 3+ = Fe 2+ + HO 2 HO 2 + Fe 3+ = Fe 2+ + O 2 + H + Fe 2+ + H 2 O 2 = Fe 3+ + OH + OH - OH + H 2 O 2 = H 2 O + HO 2 Fe 2+ + HO 2 = Fe 3+ + HO 2 - OH - + H + = H 2 O . . . . . . Сравните с механизмом без участия катализатора

17 белых верблюдов Кай Линдерстрём-Ланг (1896-1959) Притча о катализе + 1 черный верблюжонок 1/2 1/3 1/9 18 9 6 2 17 + 1 черный верблюжонок

Терминология Катализ, катализатор Ингибитор Промоторы Каталитические яды Гомогенный и гетерогенный катализ Ферменты

Особенности ферментативного катализа Высокая избирательность и специфичность катализатора Жесткие требования к условиям протекания реакций Классификация ферментов Оксиредуктазы Трансферазы Гидролазы Лиазы Изомеразы Лигазы (синтетазы)

Теперь к вопросам ЕГЭ!

A20-2008-1 На скорость химической реакции между раствором серной кислоты и железом не оказывает влияния 1) концентрация кислоты 2) измельчение железа 3) температура реакции 4) увеличение давления

A20-2008-2 Для увеличения скорости химической реакции Mg (тв.) + 2 H + = Mg 2+ + H 2 (г.) необходимо 1) добавить несколько кусочков магния 2) увеличить концентрацию ионов водорода 3) уменьшить температуру 4) увеличить концентрацию ионов магния

A20-2008-3 C наибольшей скоростью при обычных условиях протекает реакция 1) 2 Ba + O 2 = 2BaO 2) Ba 2+ + CO 3 2- = BaCO 3 ↓ 3) Ba + 2H + = Ba 2+ + H 2 4) Ba + S = BaS

A20-2008-4 Для увеличения скорости реакции 2CO + O 2 = 2CO 2 + Q необходимо 1) увеличить концентрацию CO 2) уменьшить концентрацию О 2 3) понизить давление 4) понизить температуру

A20-2008- 5 Для увеличения скорости реакции Zn (тв.) + 2 H + = Zn 2+ + H 2 (г.) необходимо 1) уменьшить концентрацию ионов цинка 2) увеличить концентрацию ионов водорода 3) уменьшить температуру 4) увеличить концентрацию ионов цинка

1) Zn + HCl (5%p-p) 2) Zn + HCl (10%p-p) 3) Zn + HCl (20%p-p) 4) NaOH (5% p-p) + HCl (5% p-p) С наибольшей скоростью при обычных условиях протекает реакция

План лекции 1.Химическая кинетика 2.Скорость химических реакций 3.Влияние концентрации на скорость химических реакций 4.Влияние температуры на скорость химических реакций 5.Влияние природы реагирующих веществ на скорость химических реакций 6. Влияние площади соприкосновения на скорость гетерогенных реакций 7. Влияние катализатора на скорость и путь химических реакций 8. Катализаторы в химическом производстве и в биологических объектах




Сущность химических реакций 1)Сущность химических реакций сводится к разрыву связей в исходных веществах и возникновению новых связей в продуктах реакции. 2)Общее число атомов каждого химического элемента до и после реакции остаётся постоянным. 3)Образование связей происходит с выделением энергии, а разрыв связей – с поглощением энергии.




Для гомогенных реакций Под скоростью химической реакции понимают изменение концентрации одного из реагирующих веществ в единицу времени при неизменном объёме. c 2 – c 1 c t 2 – t 1 t с - изменение концентрации, моль/л t – изменение времени, с v = -= МОЛЬ Л * С




Концентрация реагирующих веществ Закон действующих масс (ЗДМ) : скорость химической реакции пропорциональна произведению концентраций реагирующих веществ. Для реакции: mА + nB = A m B n ЗДМ: v = k٠С А m ٠C B n k – константа скорости реакции: k = v, при с А = с в = 1 моль/л или при с А ٠ с в = 1 моль/л k – зависит от природы реагирующих веществ и от t




Температура Правило Вант-Гоффа: при изменении температуры на каждые 10 0 С скорость большинства реакций изменяется в 2 – 4 раза. t 2 – t 1 10 – температурный коэффициент, который показывает, во сколько раз изменяется скорость реакции при изменении t на 10 0 С v 2 = v 1 ٠


Физический смысл температурного коэффициента Если температурный коэффициент равен 3, это значит, что скорость реакции возрастает в 3 раза, при повышении температуры на 10 0 С. При увеличении температуры ещё на 10 0 С, скорость реакции возрастёт в 3 2 =9 раз.














Площадь соприкосновения реагирующих веществ Скорость гетерогенных реакций зависит от площади соприкосновения веществ. Гетерогенные реакции идут только на поверхности раздела реагирующих веществ. Скорость гетерогенной реакции выражается формулой: t * S V гетерог. = МОЛЬ м 2 * С




Влияние катализатора на путь химической реакции бутадиен-1,3 этилацетат ацетальдегид этилен диэтиловый эфир

Государственное бюджетное образовательное учреждение высшего профессионального образования «Казанский государственный медицинский университет» Министерства здравоохранения Российской Федерации МЕДИКО-ФАРМАЦЕВТИЧЕСКИЙ КОЛЛЕДЖ История развития аналитической химии Выполнила: Давлетшина Гульназ Р группа


Аналитическая химия наука о методах определения химического состава вещества и его структуры. Однако это определение КС представляется исчерпывающим. Предметом аналитической химии являются разработка методов анализа и их практическое выполнение, а также широкое исследование теоретических основ аналитических методов. Сюда относится изучение форм существования элементов и их соединений в различных средах и агрегатных состояниях, определение состава и устойчивости координационных Соединений, оптических, электрохимических и других характеристик вещества, исследование скоростей химических реакций, определение метрологических характеристик методов и т. д. Существенная роль отводится поискам принципиально новых методов анализа и использованию в аналитических целях современных достижений науки и техники.


В зависимости от поставленной задачи, свойств анализируемого вещества и других условий состав веществ выражается по-разному. Химический состав вещества может быть охарактеризован Массовой долей (%) элементов или их оксидов или других соединений, а также содержанием реально присутствующих в пробе индивидуальных химических соединений или фаз, изотопов и т. д. Состав сплавов обычно выражают массовой долей (%) составляющих цементов; состав горных пород, руд, минералов и т. д. содержанием элементов в пересчете на какие-либо их соединения, чаще всего на оксиды.


Теоретическую основу аналитической химии составляют фундаментальные законы естествознания, такие, как периодический закон Д. И. Менделеева, законы сохранения массы вещества и энергии, постоянства состава вещества, действующих масс и др. Аналитическая химия тесно связана с физикой, неорганической, органической, физической и коллоидной химией, электрохимией, химической термодинамикой, теорией растворов, метрологией, теорией информации и многими другими науками.


Аналитическая химия имеет важное научное и практическое значение. Почти все основные химические законы были открыты с помощью методов этой науки. Состав различных материалов, изделий, руд, минералов, лунного грунта, далеких планет и других небесных тел установлен методами аналитической химии, открытие целого ряда элементов периодической системы оказалось возможным благодаря применению точных методов аналитической химии. Значение аналитической химии


Многие практические приемы аналитической химии и аналитические методики были известны в глубокой древности. Это, прежде всего пробирное искусство, или пробирный анализ, который выполнялся «сухим» путем, т. е. без растворения пробы и использования растворов. Методами пробирного анализа контролировали чистоту благородных металлов и устанавливали их содержание в рудах, сплавах и т. д. Техника выполнения пробирного анализа воспроизводила в лабораторных условиях производственный процесс получения драгоценных металлов. Эти методы анализа применялись в Древнем Египте и Греции, были они известны и в Киевской Руси. Практическое значение реакций в растворе было в то время невелико. Основные этапы развития аналитической химии


Развитие промышленности и различных производств к середине XVII в. потребовало новых методов анализа и исследования, поскольку пробирный анализ уже не мог удовлетворить потребностей химического и многих других производств. К этому времени к середине XVII в. относят обычно зарождение аналитической химии и формирование самой химии как науки. Определение состава руд, минералов и других веществ вызывало очень большой интерес, и химический анализ становится в это время основным методом исследования в химической науке. Р. Бойль () разработал общие понятия о химическом анализе. Он заложил основы современного качественного анализа «мокрым» путем, т. е. проведением реакций в растворе, привел и систему известные в то время качественные реакции и предложил несколько новых (на аммиак, хлор и др.), применил лакмус для обнаружения кислот и щелочей и сделал другие важные открытия.


М. В. Ломоносов () впервые стал систематически применять весы при изучении химических реакций. В 1756 г. он экспериментально установил один из основных законов природы закон сохранения массы вещества, составивший основу количественного анализа и имеющий огромное значение для всей науки. М. В. Ломоносов разработал многие приемы химического анализа и исследования, не потерявшие значения до наших дней (фильтрование под вакуумом, операции гравиметрического анализа и т. д.). К заслугам М. В. Ломоносова в области аналитической химии относится создание основ газового анализа, применение микроскопа для проведения качественного анализа по форме кристаллов, что в дальнейшем привело к развитию микрокристаллоскопического анализа, конструирование рефрактометра и других приборов. Результаты собственных исследований и опыт химика- исследователя, аналитика и технолога М. В. Ломоносов обобщил в книге «Первые основания металлургии или рудных дел» (1763), оказавшей огромное влияние на развитие аналитической химии и смежных областей, а также металлургии и рудного дела.


Применение точных методов химического анализа позволило определить состав многих природных веществ и продуктов технологической переработки, установить ряд основных законов химии. А. Л. Лавуазье () определил состав воздуха, воды и других веществ и разработал кислородную теорию горения. Опираясь на аналитические данные, Д. Дальтон () развил атомистическую теорию вещества и установил законы постоянства состава и кратных отношений. Ж. Л. Гей-Люссак () и А. Авогадро () сформулировали газовые законы.


М. В. Севергин () предложил колориметрический анализ, основанный на зависимости интенсивности окраски раствора от концентрации вещества, Ж. Л. Гей-Люссак разработал титриметриче-ский метод анализа. Эти методы вместе с гравиметрическим составили основу классической аналитической химии и сохранили свое значение до настоящего времени. Аналитическая химия, обогащаясь новыми методами, продолжала развиваться и совершенствоваться. В конце XVIII в. Т. Е. Ловиц (), развивая идеи М. В. Ломоносова, создал микрокристаллоскопический анализ метод качественного анализа солей по форме их кристаллов.


В конце XVIII и в XIX вв. трудами многих ученых Т. У. Бергмана (), Л. Ж. Тенара (), К. К. Клауса () и др. был создан систематический качественный анализ. В соответствии с разработанной схемой из анализируемого раствора действием групповых реактивов осаждали определенные группы элементов, а затем внутри этих групп проводили открытие отдельных элементов. Эту работу завершил К. Р. Фрезениус (), который написал учебники по качественному и количественному анализу и основал первый журнал по аналитической химии (Zeitschrift fur analytische Chemie, в настоящее время Fresenius Z. anal. Chem.). В это же время И. Я. Берцелиусом () и Ю. Либихом () были усовершенствованы и развиты методы анализа органических соединений на содержание основных элементов С, Н, N и др. Заметно прогрессирует титриметрический анализ появляются методы йодометрии, перманганатометрии и др. Важное открытие делают в гг. Р. В. Бунзен () и Г. Р. Кирхгоф (). Они предлагают спектральный анализ, который становится одним из основных методов аналитической химии, непрерывно развивающимся до настоящего времени.


Огромное влияние на развитие химии и других наук оказало открытие в 1869 г. Д. И. Менделеевым () периодического закона, а «Основы химии» Д. И. Менделеева стали основой и при изучении аналитической химии. Большое значение имело также создание А. М. Бутлеровым теории строения органических соединений. Значительное влияние на формирование аналитической химии и ее преподавание оказала вышедшая в 1871 г. «Аналитическая химия» А. А. Меншуткина (), выдержавшая 16 изданий в нашей стране и переведенная на немецкий и английский языки. В 1868 г. по инициативе Д.И. Менделеева и Н. А. Меншуткина при Петербургском университете было учреждено Русское химическое общество, которое с 1869 г. стало издавать свой журнал. Создание научного химического общества и выпуск журнала благотворно сказались на развитии отечественной химии и аналитической химии в частности.


Специальным разделом химии стал разработанный Н. С. Курнаковым () физико-химической анализ, основанный на изучении диаграмм «состав свойство». Метод физико-химического анализа позволяет устанавливать состав и свойства соединений, образующихся в сложных системах, по зависимости свойства системы от ее состава без выделения индивидуальных соединений в кристаллическом или ином виде.


В 1903 г. М. С. Цвет () предложил хроматографический анализ эффективный способ разделения близких по свойствам соединений, основанный на использовании адсорбционных и некоторых других свойств вещества. В полной мере достоинства этого метода были оценены лишь несколько десятилетий спустя после его открытия. За развитие распределительной хроматографии А. Мартину и Р. Сингу была присуждена Нобелевская премия в 1954 г.


Дальнейшее развитие теории аналитической химии связано с открытием Н. Н. Бекетовым () равновесного характера химических реакций и К. М. Гульдбергом () и II. Вааге () закона действующих масс. С появлением в 1887 г. теории электролитической диссоциации С. Аррениуса () химики-аналитики получили метод эффективного количественного управления химическими реакциями, а успехи химической термодинамики еще больше расширили эти возможности. Существенную роль в развитии научных основ аналитической химии сыграла монография В. Оствальда () «Научные основы аналитической химии в элементарном изложении», вышедшая в 1894 г. Большое значение для развития окислительно- восстановительных методов аналитической химии имели работы Л. В. Писаржевского () и Н. А. Шилова () по электронной теории окислительно- восстановительных процессов.


С 20-х годов XX в. начинают интенсивно развиваться количественный эмиссионный спектральный анализ, абсорбционная спектроскопия. Конструируются приборы с фотоэлектрической регистрацией интенсивности света. В 1925 г. Я. Гейровский () разработал полярографический анализ, за который в 1959 г. ему была присуждена Нобелевская премия. В эти же годы развиваются и совершенствуются хроматографические, радиохимические и многие другие методы анализа. С 1950 г. бурно развивается предложенный Э. Уолшем метод атомно-абсорбционной спектроскопии.


Развитие промышленности и науки потребовало от аналитической химии новых совершенных методов анализа. Возникла необходимость количественных определений примесей на уровне и ниже. Оказалось, например, что содержание так называемых запрещенных примесей (Cd, Pb и др.) в материалах ракетной техники должно быть не выше 10~ 5 %, содержание гафния в цирконии, используемом в качестве конструкционного материала в атомной технике, должно быть меньше 0,01%, а в материалах полупроводниковой техники примеси должны составлять не более 10 %. Известно, что полупроводниковые свойства германия обнаружились только после того, как были получены образцы этого элемента высокой степени чистоты. Цирконий был вначале забракован в качестве конструкционного материала в атомной промышленности на том основании, что сам быстро становился радиоактивным, хотя по теоретическим расчетам этого не должно было быть. Позднее выяснилось, что радиоактивным становился не цирконий, а обычный спутник циркония гафний, находящийся в виде примеси в циркониевых материалах.


Сегодняшний день аналитической химии характеризуется многими изменениями: расширяется арсенал методов анализа, особенно в сторону физических и биологических; автоматизация и математизация анализа; создание приемов и средств локального, неразрушающего, дистанционного, непрерывного анализа; подход к решению задач о формах существования компонентов в анализируемых пробах; появление новых возможностей для повышения чувствительности, точности и экспрессности анализа; дальнейшее расширение круга анализируемых объектов. Широко используют теперь компьютеры, многое делают лазеры, появились лабораторные работы; значительно поднялась роль аналитического контроля, особенно объектов окружающей нас среды. Возрос интерес к методологическим проблемам аналитической химии. Как четко определить предмет этой науки, какое место занимает она в системе научного знания, фундаментальная это наука или прикладная, что стимулирует ее развитие эти и подобные вопросы были предметом многих дискуссий.

Химическая кинетика - один из сложных разделов химии. Данная презентация помогает обучающимся усвоить первичные понятия, систематизировать более сложный материал и потренироваться в решении типовых вопросов, входящих в систему ЕГЭ.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

« C корость химических реакций». Тема урока:

Химическая кинетика – раздел химии, изучающий скорость и механизм химических реакций.

Системы: Гомогенные (однородные) – системы, в которых не видна поверхность раздела между компонентами. Газовые смеси, растворы. Гетерогенные (неоднородные) – системы, в которых видна поверхность раздела между компонентами. Тв. в-во + тв. в-во, газ + тв. в-во, жидкость + тв. в-во.

Реакции: Гомогенные – реакции, протекающие в гомогенных системах. Протекают во всем объеме системы. Гетерогенные – реакции, протекающие в гетерогенных системах. Протекают на границе раздел фаз.

Скорость химической реакции - изменение концентрации одного из реагирующих веществ за единицу времени в единице объёма. + c 2 – c 1 + ∆c − t 2 – t 1 − ∆ t C – концентрация, в моль / л t – время, в секундах  = = МОЛЬ Л ∙ С

Молярная концентрация – показывает количество молей вещества, находящееся в 1 литре. С = n / V [ C ] = [ моль/л ]

Задание 1. 1 .В сосуде объёмом 5 литров находится 1 моль водорода. Рассчитайте молярную концентрацию водорода. 2 . В растворе объёмом 2 л содержится 392 грамма серной кислоты. Рассчитайте молярную концентрацию раствора.

Изменение концентрации реагирующего вещества во времени С Концентрацця Время С 1 С 2 t 1 t 2 ∆ c ∆ t  = ∆ c ∆ t

Факторы, влияющие на скорость реакции 1. Концентрация реагирующих веществ. 2.Температура. 3. Природа реагирующих веществ. 4. Площадь соприкосновения реагирующих веществ. 5. Катализатор.

Влияние концентрации реагирующих веществ на скорость реакции. Чем больше концентрация реагирующих веществ, тем чаще сталкиваются частицы веществ, а значит скорость реакции увеличивается.

Закон действия масс: скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степени стехиометрических коэффициентов. Гульдберг, Вааге, 1867г.

m А + nB = A m B n  = k ٠ С А m ٠ C B n k – константа скорости реакции: k =  , при с А = с в = 1 моль/л при с А ٠ с в = 1 моль/л k – зависит от природы реагирующих веществ и от t

Запишите выражение ЗДМ для реакций: 2СО + О 2 = 2СО 2 N 2 + 3H 2 = 2NH 3 4P + 5O 2 = 2P 2 O 5  = k ٠ [ СО ] 2 ∙ [ О 2 ]  = k ٠ ∙ 3  = k ٠ 5

Расчетные задачи: 2. Во сколько раз необходимо повысить давление в системе: N 2(г) + 3 H 2(г)  2 NH 3(г) , чтобы повысить скорость прямой реакции в 256 раз? В системе: 4NH 3(г) + 3O 2(г)  2N 2(г) + 6H 2 O (г) концентрацию аммиака повысили с 0,3 моль/л до 0,6 моль/л, а концентрацию кислорода понизили с 0,4 моль/л до 0,1 моль/л. Как изменилась скорость реакции?

Температура. Правило Вант-Гоффа: при повышении температуры на каждые 10 0 С скорость большинства реакций увеличивается в 2 – 4 раза. t 2 – t 1 10 Ү – температурный коэффициент, который показывает, во сколько раз увеличивается скорость реакции при повышении t на 10 0 С.  2 =  1 ٠ Ү

Расчетные задачи: Как изменится скорость некоторой реакции при уменьшении температуры 30 0 С до 0 0 С, если температурный коэффициент равен 2? При температуре 20 0 С скорость реакции равна 2,7 моль/л.с. Чему равна скорость реакции при температуре 0 0 С, если температурный коэффициент равен 3?

Влияние температуры на скорость реакции. При повышении температуры, увеличивается скорость движения частиц, поэтому они чаще сталкиваются, а значит скорость реакции возрастает.

Влияние природы реагирующих веществ на скорость реакции. 2К+2Н 2 О=2КОН+Н 2 2Н 2 +О 2 =2Н 2 О

Влияние природы реагирующих веществ на скорость реакции. Са+2Н 2 О=Са(ОН) 2 +Н 2

Влияние природы реагирующих веществ на скорость реакции. Чем активнее вещество, тем скорость реакции с его участием больше.

Взаимодействие металлов с кислотами Zn + 2HCl = ZnCl 2 + H 2  1 Fe + 2HCl = FeCl 2 + H 2  2 Cu + 2HCl = реакция невозможна  1 >  2 Zn активнее Fe , а Cu малоактивный металл

Влияние площади соприкосновения реагирующих веществ на скорость реакции. 1. Скорость гетерогенных реакций зависит от площади соприкосновения веществ. 2. Гетерогенные реакции идут только на поверхности раздела реагирующих веществ. 3. Скорость гетерогенной реакции: ∆ n ∆ t ∙ S  гетерог. =

Влияние площади соприкосновения реагирующих веществ на скорость реакции. Чем больше поверхность соприкосновения веществ, тем больше скорость реакции.

Влияние катализатора на скорость реакции. Катализаторами называются вещества, изменяющие скорость химических реакций. Химические реакции, протекающие при участии катализаторов, называют каталитическими. Сам катализатор в реакциях не расходуется и в конечные продукты не входит.

Влияние катализатора на скорость реакции. С 12 Н 22 О 11 + 12О 2 = 12СО 2 +11Н 2 О

Механизм каталитических реакций Для реакции: А + В = АВ Механизм: Катализатор взаимодействует с исходным веществом: А + К = АК Промежуточное соединение взаимодействует с другим исходным веществом: АК + В = АВ + К Суммарное уравнение: А + В = АВ

Как необходимо изменить условия в системе: 2 SO 2(г) + O 2(г)  2 SO 3(г) + Q , находящейся в равновесии, чтобы добиться максимальной концентрации оксида серы (IV)? Как сместится равновесие в системе: 2 H 2 S (г) + SO 2(г)  2 H 2 O (г) + 3 S (т) + Q , если: а) повысить температуру; б) понизить дав-ление; в) ввести катализатор; г) повысить концентрацию сероводорода; д) понизить концентрацию оксида серы (IV).

Домашнее задание: 1. Учить теорию и определения. 2. Письменно: О. стр 31 №48 записать выражение ЗДМ для реакций: 2 SO 2 + O 2 = 2SO 3 4NH 3 + 3O 2 = 2N 2 + 6H 2 O 4NH 3 + 5O 2 = 4NO + 6H 2 O 2H 2 O 2 = 2H 2 O + O 2 Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O