Диафрагма фотоаппарата, светосила, относительное отверстие. Что есть что? Значение диафрагмы и его влияние на качество фотографии Вычисляем значение вспомогательных величин и по выражениям

Наиболее полно исследованными сужающими устройствами, которые рекомендованы для широкого применения Техническим комитетом 30 (ТК 30) Международной организации по стандартизации (ИСО), являются так называемые нормальная диафрагма и нормальное сопло [?]. На основе периодически издаваемых рекомендаций ИСО почти во всех промышленно развитых странах разработаны нормы или правила по применению данных сужающих устройств.

В нашей стране подобные нормы по методике и формулам расчета стандартных сужающих устройств, основным требованиям к расходомерам, методике их поверки, а также методике определения погрешности измерения расхода установлены Правилами 28-64 Го­сударственного Комитета стандартов, мер и измеритель­ных приборов при Совете Министров СССР. Правила рас­пространяются на измерения расхода однофазных жидко­стей и газов, а также перегретых паров с помощью стан­дартных сужающих устройств, установленных внутри трубопровода диаметром не менее 50 мм, при условии, что поток является установившимся, числа Рейнольдса пре­вышают определенные значения и отношение давлений перед и за сужающим устройством не достигает критиче­ской величины.

Нормальные или стандартные диафрагма и сопло выбраны и рекомендованы для применения не случайно. Их коэффициенты расхода в широкой области чисел Рейнольдса почти не меняются. Заметное изменение наступает лишь при сравнительно малых Re. Поэтому при малыхReстандартные диафрагмы и сопла не применяются.

Стандартная диафрагма представляет собой сужаю­щее устройство, выполненное в виде плоского диска с кон­центрическим отверстием для истечения жидкости. Схематичное изображение диафрагмы приведено на Рис. 3.

Выше оси показано измерение перепада дав­ления через кольцевые камеры, ниже оси - через отдель­ные отверстия. На рисунке приняты следующие обозна­чения: D 20 - внутренний диаметр трубопровода перед сужающим устройством при температуре 20° С;d 20 -внутренний диаметр диафрагмы при той же температуре.

Рис. 3

Толщина диска должна быть в пределах от 0,005D до 0,05D, гдеD– диаметр трубопровода. Если толщина диска более 0,02D, то отверстие на стороне выхода должно иметь коническую расточку с углом в пределах от 45 до 60° (ранее от 30 до 45°). Таким образом, толщина цилиндрического отверстия диафрагмы должна находиться в пределах от 0,005D до 0,02D.Входной угол цилиндрического отверстия должен быть строго равен 90°, а сама входная кромка должна быть острой, без каких бы то ни было заусенцев и зазубрин. Степень шероховатостиkвходного торца диафрагмы допускается Правилами до 0,005D, но оговаривается при этом, что волна (характеризующая неплоскостность) должна превышать высотуkне менее чем в 200 раз.

Правила 28–64 предусматривают только угловой способ отбора давлений. При этом возможны две его разновидности – точечный и камерный. В первом случае отбор осуществляется отдельными сверлениями, во втором через кольцевые камеры, которые соединяются с внутренним пространством трубопровода с помощью кольцевых щелей, находящихся непосредственно у плоскостей диафрагмы, или же группы равномерно распределенных по окружности отверстий.

Именно последний способ принят в ГОСТ 14321–73. Диафрагмы камерные на р у до 100 кгс/см 2 (10 Па). Кольцевые камеры способствуют отбору среднего давления в данном сечении[?]. поэтому они особенно целесообразны, когда нет уверенности в надлежащей осевой симметрии профиля скоростей, то есть при недостаточной длине прямых участков трубы до и после диафрагмы.

Камерные диафрагмы согласно ГОСТ 14321–73 изготовляют только при диаметрах труб D не более 400–500 мм. При больших диаметрах камерный отбор давлений выполняется с помощью двух наружных трубок небольшого (10–12 мм) диаметра, согнутых в кольцо вокруг основного трубопровода и соединенных с пространством до и после диафрагмы с помощью нескольких (4–8) равномерно расположенных радиальных трубок.

Слабым местом диафрагмы является входная кромка, которая под действием текущего потока притупляется, что приводит к постепенному увеличению ее коэффициента расхода и появлению погрешности отрицательного знака. В связи сэтим необходимо периодически контролировать состояние диафрагмы путем ее выемки и осмотра. Для этого требуется отключить участок трубопровода, на котором установлена диафрагма. Если требуется бесперебойная подача измеряемой среды, то диафрагму надо устанавливать на обводной линии, снабженной запорными устройствами для возможности ее отключения. Длина этой линии должна быть такой, чтобы до и после диафрагмы были прямые участки достаточной длины. Это сильно усложняет установку. Кроме того, сам процесс выемки трудоемок и сопровождается порчей прокладок, а иногда и фланцевых трубок.

В связи с этим в американской практике широкое применение получили особые устройства, позволяющие вынимать диафрагмы для ревизии и смены без выключения трубопровода [?]. для этой цели дисковая диафрагма помещается в особую камеру, снабженную двумя фланцами для установки в трубопроводе. Камера имеет две полости, разделенные запорным элементом: в нижней – располагается диафрагма, верхняя выполняет роль шлюза.

Диафрагмы с одной парой отбора перепада давления должны комплектоваться запорными вентилями и ниппелями, а также приваренными импульсными трубками для соединений 1-4; уравнительными конденсационными со­судами по ГОСТ 14318-73 для соединений 5-9; для соеди­нений 10-13 - импульсными трубками и уравнитель­ными сосудами по ГОСТ 14319-73 или импульсными трубками и разделительными сосудами по ГОСТ 14320-73. Диафрагмы с несколькими парами отборов поставляются с уравнительными конденсационными сосудами исполне­ния 5 по ГОСТ 14319-73 без импульсных трубок. Коли­чество пар сосудов должно соответствовать числу дифманометров, комплектуемых с диафрагмой. В обозначении камерной диафрагмы указываются услов­ное давление, условный проход трубопровода, исполнение посадочных мест, материал корпусов камер и диска, номер соединения с импульсными трубками или сосудами и ГОСТ.

Стандартные сопла. Сопла особенно удобны при измерении расхода газов и перегретого пара, а также при измерении расхода пара высокого давления в трубопроводах диаметром D200мм. По сравнения с диафрагмами они менее чувствительны у коррозии, загрязнением и обеспечивают несколько большую точность измерения.

Стандартное сопло Вентури состоит из профильной входной части, цилиндрической средней части и выходного конуса. Потеря давления в сопле Вентури возрастает с увеличением угла косинуса и уменьшением длины косинуса. Сопло Вентури применяется в тех случаях, когда потеря давления имеет решающее значение .

Расчетное задание.

Задание: Рассчитать диаметр отверстия диафрагмы, установленной на участке трубопровода, при котором максимальному перепаду давления Δр соответствовал бы максимальный расход Q м = 80 т/час. Рассчитать также величину безвозвратных потерь напора, соответствующую максимальному расходу

Исходные данные:

Диаметр трубопровода при нормальной температуре (20°С) D 20 = 200 мм;

Материал трубопровода Сталь 20;

Материал диафрагмы Сталь 1Х18Н9Т;

Давление перед диафрагмой р 1 = 100 кгс/см 2 ;

Температура пара t = 400 °С;

Перепад давления Δр = 0,4 кгс/см 2 ;

Диаметр трубопровода при рабочей температуре

где выбирается из таблицы 15.1 (С. Ф. Чистяков, Д. В. Радун Теплотехнические измерения и приборы) в зависимости от рабочей температуры и материала трубопровода.

D = 200 мм∙1,0052 = 201,04 мм

Определим плотность пара при р = 100 кгс/см 2 и t = 400°С из таблиц теплофизических свойств воды и водяного пара.

р = 100 кгс/см 2 = 9,8066 МПа

r = 36,9467 кг/м 3

Определим средний расход.

Известно, что для данного способа определения расхода

Тогда
т/ч

Определим произведение am из формулы (15-14) (С. Ф. Чистяков, Д. В. Радун Теплотехнические измерения и приборы):

,

где e - поправочный множитель, учитывающий сжимаемость среды. В первом приближении принимаем, что пар не сжимаем, тогда e = 1.

Δр = 0,4 кгс/см 2 = 39226,4 Па

Воспользуемся таблицей 15.3 (С. Ф. Чистяков, Д. В. Радун Теплотехнические измерения и приборы) для составления таблицы коэффициентов a и am для диаметра трубопровода D = 200 мм в зависимости от модуля диафрагмы m.

Вычисленное значение am соответствует значениям m, принадлежащим интервалу 0,5¸0,6.

При помощи линейной интерполяции определим точное значение m.

Определим e во втором приближении.

Поправочный множитель e зависит от модуля m, показателя адиабатического расширения, а также от отношения Δр ср /р 1 .

Определим отношение Δр ср /р 1 .

Из формулы (15-29)

Показатель адиабатического расширения определяем из таблицы 15.5 в зависимости от рабочей температуры пара.

При t = 400°С c = 1,29

Определим e по формуле:

Определяем am во втором приближении, поскольку разница между значениями e, полученными в первом и во втором приближении больше чем 0,0005

e 1 - e 2 = 1 – 0,99900 = 0,001 > 0,0005

где - коэффициент термического расширения материала диафрагмы, определяется из таблицы 15.1 в зависимости от материала диафрагмы и рабочей температуры.

мм

Величину безвозвратных потерь напора определим из таблицы 15.2 в зависимости от модуля m.

тогда р n = 0,412∙0,4 = 0,165 кгс/см 2

Домашние задачи.

Задача №1

Исходные данные:

t 1 = 100°C; t 2 = 50°C; t 0 = 0°C

Определить: E(t 1 , t 0); E(t 2 , t 0)

Е Fe-Cu (t, t 0) = E Pt-Fe (t, t 0) + E Pt-Cu (t, t 0)

Воспользуемся таблицей 4.1 из этого учебника для определения термо-ЭДС пар Pt – Fe, Pt – Cu при t 1 = 100°C, t 0 = 0°C.

Правильное использование объектива, которым оснащена ваша фотокамера, имеет намного большее влияние на резкость получаемого изображения, чем выбор собственно объектива. Не имеет смысла искать самый лучший объектив . Его просто нет. Один из самых важных параметров при съемке - это диафрагма. Именно она больше всего влияет на качество изображения. Разница между снимками, сделанными с разной диафрагмой одним и тем же объективом, будет намного заметнее, чем разница между снятыми с одним и тем же ее значением, но разными объективами.

Диафрагма F10, скорость затвора 1/400, ISO 64

Диафрагма F5, скорость затвора 1/400, ISO 64

Что такое аберрация

Как уже было сказано, идеального объектива просто нет. Законы физики никто не отменял и никогда не отменит. А они не позволяют световому лучу следовать именно по тому пути, который ему рассчитали оптики в пределах некой идеальной оптической системы. Именно это ведет к (сферическим, хроматическим и пр.). И инженеры, разрабатывающие объективы, не могут это исправить. В центре линза идеальна. Но ближе к краям она в той или иной мере искажает свет. Чем ближе к краю линзы - тем в большей степени свет рассеивается и преломляется.

При полностью открытой диафрагме на плёнку или матрицу цифрового аппарата попадает свет, который собран со всей поверхности линзы. В этом случае все аберрации объектива проявляются очень наглядно. Когда мы прикрываем отверстие диафрагмы, часть светового потока, проходящая через края всех линз объектива, отсекается. Таким образом, в формировании изображения принимает участие только центр линз, который свободен от искажений.

Всё кажется довольно простым. Чем меньше отверстие диафрагмы, тем, таким образом, выше резкость изображения. Но это не так. При съемке на самых маленьких диафрагмах нас ждет неожиданная большая неприятность.

По мере уменьшения отверстия диафрагмы всё большая часть световых лучей, которые проходят через это отверстие, касается его краёв и немного отклоняются от своего основного пути. Они как бы огибают края. Это явление называется дифракция. При дифракции каждая точка снимаемого объекта, даже если она находится четко в фокусе, на матрицу проецируется не как точка, а как небольшое размытое пятно, которое принято называть диском Эйри. И размеры этого диска тем больше, чем меньше отверстие диафрагмы. И когда диаметр диска Эйри превышает размеры отдельного фотодиода на матрице, то нерезкость изображения становится очень заметной. И чем меньше мы делаем отверстие диафрагмы, тем больше усиливается дифракция.

Разрешение современных объективов настолько высоко, что даже лёгкое размытие изображения, вызванное дифракцией, заметно уже на диафрагме 11 и меньше. А компактные камеры, у которых сенсоры совсем крошечные, не позволяют в принципе использовать диафрагму меньше чем 8. При этом малый размер диодов матрицы делают дифракцию очень заметной.

Имеет значение и фокусное расстояние объектива. Нужно помнить, что такое диафрагменное число. Это отношение диаметра отверстия диафрагмы к фокусному расстоянию объектива. Проще говоря, при одном и том же значении диафрагмы физический размер отверстия в разных объективах весьма различен. Физический размер диафрагменного отверстия тем больше, чем больше фокусное расстояние объектива. Отсюда вывод: в объективах с разным фокусным расстоянием при одном и том же значении диафрагмы дифракция проявляется в разной степени. Например, при диафрагме 22 на широкоугольном объективе она очень заметна, а у диннофокусника - вполне терпима.

Зона наилучшего восприятия

Самое хорошее значение диафрагмы для каждого объектива индивидуально. Обычно это 5,6 - 11, или около этого. Всё зависит от модели объектива. Попробуйте открыть диафрагму пошире - оптические искажения будут заметны в большей степени. А если прикрыть диафрагму поуже - дифракция начнёт размывать изображение. На маленьких отверстиях диафрагмы, например, на 11 - 16, почти все объективы «рисуют» одинаково. Но вот на широких отверстиях у разных объективов качество изображения весьма разнится. Чем объектив лучше, тем лучше и картинка, «нарисованная» им при открытой диафрагме.

Правильный подбор диафрагмы - это некий баланс между общей резкостью и глубиной резко изображаемого пространства. Тут теоретические рассуждения и рекомендации вряд ли помогут. В этом случае нужно довериться своему опыту, четкому пониманию поставленной задачи, и, в конце концов, своему художественному чутью, вкусу. Но, тем не менее, некоторые рекомендации лишними не будут.

Как правильно выбрать диафрагму

  • Определите диафрагму, при которой объектив вашей камеры будет давать изображение с наилучшей резкостью, и, по возможности, всегда используйте именно её.
  • Если съемка проходит при недостаточном освещении, или вы хотите что-то в кадре выделить при помощи малой глубины резкости, то диафрагму можно увеличить. Но без особой необходимости не открывайте её полностью.
  • Если такая необходимость возникла, диафрагму нужно смело открыть. Особенно переживать по этому поводку не стоит. Диафрагма - не самое главное, что влияет на резкость фотографий. Не забывайте про «шевелёнку». Она портит «картинку» намного сильнее всяких аберраций.
  • Если по вашему замыслу на снимке требуется большая глубина резкости, диафрагму нужно прикрыть. Но не более чем до 11 у широкоугольников и 16 у длиннофокусных объективов.
  • Если вам всё-таки не хватает , то можно снимать широкоугольниками на 16 и длиннофокусниками на 22. Но не более. В противном случае заметно упадет общая резкость изображения.

Вот, собственно и вся нехитрая наука. Теперь вы, зная о слабых сторонах вашей аппаратуры, сможете избегать тех ситуаций, когда они проявляются. И, стало быть, пора выжать из вашего детища все соки.

Говоря простым языком, диафрагма фотоаппарата – это устройство, через которое свет попадает на матрицу фотоаппарата. Диафрагма состоит из так называемых «лепестков», количество которых может варьироваться от трех до двадцати штук. В зависимости от интенсивности освещения лепестки уменьшают или увеличивают диаметр светопропускающего отверстия. Принцип их действия аналогичен зрачку: при тусклом свете он расширяется, при ярком – сужается.

Чтобы лучше понять принципы расчета характеристики объектива (в том числе, и значения диафрагмы), необходимо знать, что такое фокусное расстояние объектива.

Фокусное расстояние объектива

Фокусное расстояние – это расстояние между матрицей фотоаппарата и главной оптической плоскостью объектива при условии его фокусировки в бесконечность. Этим показателем определяется угол обзора, достигаемый тем или иным объективом. Чем фокусное расстояние больше, тем угол обзора меньше. В характеристиках обычно указываются минимальное и максимальное фокусное расстояние, которые обеспечивает объектив. Измерять его принято в миллиметрах.

Отношение фокусного расстояния к размеру отверстия диафрагмы называется f-числом. Именно оно и определяет значение диафрагмы. Чем меньше этот показатель, тем больше отверстие, и тем больше света проникает на матрицу фотоаппарата. Стоит учесть, что значение диафрагмы часто указывается в виде знаменателя дроби, без уточнения фокусного расстояния.


Возможные значения f-чисел описываются специальной шкалой диафрагм, представляющей собой последовательность чисел:

1 – 1,4 – 2 – 2,8 – 4 – 5,6 – 8 – 11 – 16 – 22 и так далее.

Суть шкалы в том, что сужение отверстия объектива в два раза приводит к уменьшению количества света, попадающего на матрицу, в четыре раза. Аналогичное действие оказывает и двойное увеличение фокусного расстояния. Диафрагменная шкала нередко наносится на оправу объектива для удобства фотографа.

Максимальное количество света пропускают объективы с наименьшими f-числами (f/1,2 – f/1,8). Называются такие объективы светосильными.


Светосила объектива

Светосила – это степень ослабления объективом фотоаппарата светового потока, или, другими словами, способность объектива передавать реальную яркость объекта. Чем больше светосила, тем качественнее получаются снимки, сделанные в условиях плохого освещения без использования штатива и вспышки. Кроме того, светосильные объективы позволяют фотографировать с максимально короткой выдержкой.

Значение светосилы определяется значением максимально открытой диафрагмы. Вместе с фокусным расстоянием его обычно указывают на ободе объектива. Так, например, надпись 7-21/2,0-2,8 означает, что при фокусном расстоянии в 7 миллиметров светосила равна 2,0. Соответственно, при фокусном расстоянии в 21 миллиметр – 2,8.

При выборе объектива стоит учитывать, что максимально открытая диафрагма используется очень редко. При этом цена светосильных объективов ощутимо выше. Для большинства покупателей нет никакого смысла переплачивать за показатель 1:1.2, вполне достаточно купить более бюджетный вариант со светосилой 1:1.8.

Относительное отверстие

Величину, обратную диафрагменному числу, называют относительным отверстием . Величина относительного отверстия определяет, во сколько раз фокусное расстояние объектива превышает диаметр его отверстия. На оправе объектива этот показатель обычно имеет вид дроби типа 1:2. Такие цифры означают, что диаметр отверстия вдвое меньше фокусного расстояния.

В разных источниках понятия значения светосилы, величины относительного отверстия и непосредственно диафрагмы часто описаны научным, малопонятным языком. Чтобы не ошибиться при выборе фотоаппарата и не запутаться в характеристиках объектива, стоит запомнить зависимости, существующие между ними.

Так, светосила – это постоянное свойство оптики, которое невозможно изменить или настроить. Следует помнить, что светосила не имеет отношения к текущему значению диафрагмы. Как уже упоминалось выше, ее значение равно значению диафрагмы в максимально открытом положении.

Относительное отверстие, в отличие от светосилы, величина изменяемая. Отрегулировать ее можно при помощи диафрагмы.

Январь 22 2018

Выбор диафрагм

1. Общее понятие диафрагм

Диафрагма представляет собой шайбу с определенным диаметром отверстия. Диафрагмы увеличивают сопротивление пожарного крана, вследствие чего расход воды через него уменьшается. Диаметр диафрагм подбирают таким образом, чтобы все пожарные краны обеспечивали расход воды, близкий к расчетному значению независимо от высоты здания.

2.Расчет диафрагм

Диаметр отверстия диафрагмы в зависимости от проходного диаметра клапан пожарного крана, давления и расхода определяется расчетным методом или по номограмме.

2.1.Расчетный метод определения диаметра диафрагм

Диаметр диафрагмы d определяется следующим образом:

d 2 /D 2 =F/F пк или d=D*(F/F пк) 0.5

Q=10*μ*F*(2*g*P) 0.5 ; Q н =Q в *(P н /P в) 0.5

по формуле Дарси-Вейсбаха:

ΔР=Р н -Р в =ε*V 2 /(200*g);

из формулы поучаем ε=200*g*ΔР/V 2

V=Q/F пк,

где D — проходной диаметр клапана пожарного крана; F, F пк — площадь проходного отверстия соответственно диафрагмы и клапана пожарного крана; Q н, Q в — расход соответственно через диафрагму и клапан пожарного крана; ΔР — разница давлений расположения наинизшего и наивысшего клапанов пожарных кранов; P н, P в — давление соответственно наинизшего и наивысшего клапанов пожарных кранов; ε — коэффициент сопротивления диафрагмы; V — скорость водяного потока через клапан.

Таблица 1. Взаимосвязь между коэффициентом сопротивления диафрагмы и соотношением площади проходного отверстия диафрагмы и клапана пожарного крана.

показатель значение
коэффициент сопротивления диафрагмы, ε 226,0 43,8 17,5 7,8 3,75 1,8 0,8
соотношение F/F пк 0,1 0,2 0,3 0,4 0,5 0,6 0,7

2.2. Определение диаметра диафрагм по номограмме

Для определения диаметра дисковой диафрагмы по номограмме (рисунок 1) на левой линейке (Р) отмечают точку, соответствующую максимальному значению давления на клапане пожарного крана, а на правой линейке (q) отмечают точку, соответствующую требуемому или расчетному расходу. Через эти точки проводится прямая. Точка пересечения этой прямой со средней линейкой (Ø50-70) и будет искомым значением диаметра диафрагмы: в левой части — для диаметра клапана пожарного крана DN50, а в правой — для диаметра DN65.

Пример определения диаметра диафрагмы по номограмме:

Например, требуется определить диаметра диафрагмы для клапанов DN 50 и DN65, если давление у них составляет 0.4МПа, расход через ручной пожарный ствол составляет q=5л/с. Для решения данной задачи необходимо провести прямую, соединяющую эти два значения на номограмме. Точка пересечения этой прямой со средней линейкой (Ø50-70) и даст нужное значение диаметра диафрагмы — Ø19мм (для клапана DN65), либо Ø18.7 мм (для клапана DN50).

Рисунок 1.

Примечание: Чтобы определить численное значение давления у клапана пожарного крана в «МПа», необходимо число на левой линейке (Р) разделить на 100.

Диафрагму следует устанавливать между клапаном пожарного крана и соединительной головкой. Таким образом при отсоединении пожарного рукава от клапана диафрагма будет открыта для наблюдения и проверки диаметра отверстия. Количество диафрагм различных диаметров должно быть по возможности наименьшим. Допускается устанавливать диафрагмы с одинаковым диаметром отверстий на 3-4 этажа здания.