Состав атомного ядра. Ядерные силы

Состав ядра атома

В 1932г. после открытия протона и нейтрона учеными Д.Д. Иваненко (СССР) и В. Гейзенберг (Германия) предложили протонно-нейтронную модель атомного ядра .
Согласно этой модели ядро состоит из протонов и нейтронов. Общее число нуклонов (т. е. протонов и нейтронов) называют массовым числом A : A = Z + N . Ядра химических элементов обозначают символом:
X – химический символ элемента.

Например, – водород,

Для характеристики атомных ядер вводится ряд обозначений. Число протонов, входящих в состав атомного ядра, обозначают символом Z и называют зарядовым числом (это порядковый номер в периодической таблице Менделеева). Заряд ядра равен Ze , где e – элементарный заряд. Число нейтронов обозначают символом N .

Ядерные силы

Для того, чтобы атомные ядра были устойчивыми, протоны и нейтроны должны удерживаться внутри ядер огромными силами, во много раз превосходящими силы кулоновского отталкивания протонов. Силы, удерживающие нуклоны в ядре, называются ядерными . Они представляют собой проявление самого интенсивного из всех известных в физике видов взаимодействия – так называемого сильного взаимодействия. Ядерные силы примерно в 100 раз превосходят электростатические силы и на десятки порядков превосходят силы гравитационного взаимодействия нуклонов.

Ядерные силы обладают следующими свойствами:

  • обладают силами притяжения;
  • является силами короткодействующими (проявляются на малых расстояниях между нуклонами);
  • ядерные силы не зависят от наличия или отсутствия у частиц электрического заряда.

Дефект массы и энергия связи ядра атома

Важнейшую роль в ядерной физике играет понятие энергии связи ядра .

Энергия связи ядра равна минимальной энергии, которую необходимо затратить для полного расщепления ядра на отдельные частицы. Из закона сохранения энергии следует, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц.

Энергию связи любого ядра можно определить с помощью точного измерения его массы. В настоящее время физики научились измерять массы частиц – электронов, протонов, нейтронов, ядер и др. – с очень высокой точностью. Эти измерения показывают, что масса любого ядра M я всегда меньше суммы масс входящих в его состав протонов и нейтронов :

Разность масс называется дефектом масс . По дефекту массы с помощью формулы Эйнштейна E = mc 2 можно определить энергию, выделившуюся при образовании данного ядра, т. е. энергию связи ядра E св:

Эта энергия выделяется при образовании ядра в виде излучения γ-квантов.

Ядерная энергетика

В нашей стране была построена первая в мире атомная электростанция и запущена в 1954 году в СССР, в городе Обнинске. Развивается строительство мощных атомных электростанций. В настоящее время в России 10 действующих АЭС . После аварии на Чернобыльской АЭС приняты дополнительные меры по безопасности атомных реакторов.

Хроматин

1) гетерохроматин;

2) эухроматин.

Гетерохроматин

Структурный

Факультативный

Эухроматин

а) гистоновыми белками;

б) негистоновыми белками.

ЁГистоновые белки (гистоны

ЁНегистоновые белки

Ядрышко

ЁРазмер — 1-5 мкм.

ЁФорма — сферическая.

Гранулярный компонент

Фибриллярный

Ядерная оболочка

1. Внешней ядерной мембраны (m. nuclearis externa),

Внутренняя ядерная мембрана

ЁФункции:

Кариоплазма

Репродукция клеток

Ядерный аппарат

Ядро присутствует во всех эукариотических клетках, за исключением зрелых эритроцитов и ситовидных трубок растений. Клетки, как правило, имеют одно ядро, но иногда встречаются многоядерные клетки.

Ядро бывает шаровидной или овальной формы.

В некоторых клетках встречаются сегментированные ядра. Размеры ядер — от 3 до 10 мкм в диаметре. Ядро необходимо для жизни клетки. Оно регулирует активность клетки. В ядре хранится наследственная информация, заключенная в ДНК. Эта информация, благодаря ядру, при делении клетки передается дочерним клеткам. Ядро определяет специфичность белков, синтезируемых в клетке. В ядре содержится множество белков, необходимых для обеспечения его функций. В ядре синтезируется РНК.

Клеточное ядро состоит из оболочки, ядерного сока, одного или нескольких ядрышек и хроматина .

Функциональная роль ядерной оболочки заключается в обособлении генетического материала (хромосом) эукариотической клетки от цитоплазмы с присущими ей многочисленными метаболическими реакциями, а также регуляции двусторонних взаимодействий ядра и цитоплазмы. Ядерная оболочка состоит из двух мембран – внешней и внутренней, между которыми располагается околоядерное (перинуклеарное) пространством . Последнее может сообщаться с канальцами цитоплазматической сети. Внешняя мембрана ядерной оболочки непосредственно контактирует с цитоплазмой клетки, имеет ряд структурных особенностей, позволяющих отнести ее к собственно мембранной системе ЭПР. На ней располагается большое количество рибосом, как и на мембранах эргастоплазмы. Внутренняя мембрана ядерной оболочки рибосом на своей поверхности не имеет, но структурно связана с ядерной ламиной – фиброзным периферическим слоем ядерного белкового матрикса.

В ядерной оболочке имеются ядерные поры диаметром 80-90 нм, которые образуются за счет многочисленных зон слияния двух ядерных мембран и представляют собой как бы округлые, сквозные перфорации всей ядерной оболочки. Поры играют важную роль в переносе веществ в цитоплазму и из нее. Ядерный поровый комплекс (ЯПК) с диаметром около 120 нм имеет определенное строение (состоит из более 1000 белков – нуклеопоринов , масса которых в 30 раз больше, чем рибосома), что указывает на сложный механизм регуляции ядерно-цитоплазматических перемещений веществ и структур. В процессе ядерно-цитоплазматического транспорта ядерные поры функционируют как некоторое молекулярное сито, пропуская частицы определенного размера пассивно, по градиенту концентрации (ионы, углеводы, нуклеотиды, АТФ, гормоны, белки до 60 кДа). Поры не являются постоянными образованиями. Число пор увеличивается в период наибольшей ядерной активности. Количество пор зависит от функционального состояния клетки. Чем выше синтетическая активность в клетке, тем больше их число. Подсчитано, что у низших позвоночных животных в эритробластах, где интенсивно образуется и накапливается гемоглобин, на 1 мкм2 ядерной оболочки приходится около 30 пор. В зрелых эритроцитах названных животных, сохраняющих ядра, на 1 мкг оболочки остается до пяти пор, т.е. в 6 раз меньше.

В области перового комплекса начинается так называемая плотная пластинка - белковый слой, подстилающий на всем протяжении внутреннюю мембрану ядерной оболочки. Эта структура выполняет прежде всего опорную функцию, так как при ее наличии форма ядра сохраняется даже в случае разрушения обеих мембран ядерной оболочки. Предполагают также, что закономерная связь с веществом плотной пластинки способствует упорядоченному расположению хромосом в интерфазном ядре.

Ядерный сок (кариоплазма или матрикс) – внутреннее содержимое ядра, представляет собой раствор белков, нуклеотидов, ионов, более вязкий, чем гиалоплазма. В нем присутствуют также фибриллярные белки. В кариоплазме находятся ядрышки и хроматин. Ядерный сок образует внутреннюю среду ядра, в связи с чем он играет важную роль в обеспечении нормального функционирования генетического материала. В составе ядерного сока присутствуют нитчатые, или фибриллярные, белки, с которыми связано выполнение опорной функции: в матриксе находятся также первичные продукты транскрипции генетической информации - гетероядерные РНК (гяРНК), которые здесь же подвергаются процессингу, превращаясь в мРНК.

Ядрышко – обязательный компонент ядра, обнаруживаются в интерфазных ядрах и представляют собой мелкие тельца, шаровидной формы. Ядрышки имеют большую плотность, чем ядро. В ядрышках происходит синтез рРНК, других видов РНК и образование субъединиц рибосом . Возникновение ядрышек связано с определенными зонами хромосом, называемыми ядрышковыми организаторами. Число ядрышек определяется числом ядрышковых организаторов. В них содержатся гены рРНК. Гены рРНК занимают определенные участки (в зависимости от вида животного) одной или нескольких хромосом (у человека 13-15 и 21-22 пары) - ядрышковые организаторы , в области которых и образуются ядрышки. Такие участки в метафазных хромосомах выглядят как сужения и называются вторичными перетяжками . С помощью электронного микроскопа в ядрышке выявляют нитчатый и зернистый компоненты. Нитчатый (фибриллярный) компонент представлен комплексами белка и гигантских молекул РНК-предшественниц, из которых затем образуются более мелкие молекулы зрелых рРНК. В процессе созревания фибриллы преобразуются в рибонуклеопротеиновые зерна (гранулы), которыми представлен зернистый компонент.

Хроматиновые структуры в виде глыбок, рассеянных в нуклеоплазме, являются интерфазной формой существования хромосом клетки.

Рибосома - это округлая рибонуклеопротеиновая частица диаметром 20-30 нм. Рибосомы относят к немембранным органеллам клетки. На рибосомах осуществляется соединение аминокислотных остатков в полипептидные цепочки (синтез белка). Рибосомы очень малы и многочисленны.

Она состоит из малой и большой субъединиц, объединение которых происходит в присутствии матричной (информационной) РНК (мРНК). В малую субъединицу входят молекулы белка и одна молекула рибосомальной РНК (рРНК), во вторую – белки и три молекулы рРНК. Белок и рРНК по массе в равных количествах участвуют в образовании рибосом. рРНК синтезируется в ядрышке.

Одна молекула мРНК обычно объединяет несколько рибосом наподобие нитки бус. Такую структуру называют полисомой. Полисомы свободно располагаются в основном веществе цитоплазмы или прикреплены к мембранам шероховатой цитоплазматической сети. В обоих случаях они служат местом активного синтеза белка. Сравнение соотношения количества свободных и прикрепленных к мембранам полисом в эмбриональных недифференцированных и опухолевых клетках, с одной стороны, и в специализированных клетках взрослого организма - с другой, привело к заключению, что на полисомах гиалоплазмы образуются белки для собственных нужд (для «домашнего» пользования) данной клетки, тогда как на полисомах гранулярной сети синтезируются белки, выводимые из клетки и используемые на нужды организма (например, пищеварительные ферменты, белки грудного молока). Рибосомы могут свободно находиться в цитоплазме или быть связанными с эндоплазматической сетью, входя в состав шероховатой ЭПС Белки, образовавшиеся на рибосомах, соединенных с мембраной ЭПС, обычно поступают в цистерны ЭПС. Белки, синтезируемые на свободных рибосомах, остаются в гиалоплазме. Например, на свободных рибосомах синтезируется гемоглобин в эритроцитах. В митохондриях, пластидах и клетках прокариот также присутствуют рибосомы.

Предыдущая11121314151617181920212223242526Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Структура ядра и его химический состав

В состав ядра входит хроматин, ядрышко, кариоплазма (нуклеоплазма), ядерная оболочка.

В клетке, которая делится, в большинстве случаев имеется одно ядро, но встречаются клетки, которые имеют два ядра (20% клеток печени двуядерные), а также многоядерные (остеокласты костной ткани).

ЁРазмеры — колеблятся от 3-4 до 40 мкм.

Каждый тип клетки характеризуется постоянным соотношением объема ядра к объему цитоплазмы. Такое соотношение носит название индекса Гертвинга. В зависимости от значения этого индекса клетки делятся на две группы:

1. ядерные — индекс Гертвинга имеет большее значение;

2. цитоплазматические — индекс Гертвинга имеет незначительные значения.

ЁФорма — может быть сферической, палочковидной, бобовидной, кольцевидной, сегментированной.

ЁЛокализация — ядро всегда локализуется в определенном месте клетки. Например, в цилиндрических клетках желудка оно находится в базальном положении.

Ядро в клетке может находится в двух состояниях:

а) митотическом (во время деления);

б) интерфазном (между делениями).

В живой клетке интерфазное ядро имеет вид оптически пустого, обнаруживается только ядрышко. Структуры ядра в виде нитей, зерен можно наблюдать только при действии на клетку повреждающих факторов, когда она переходит в состояние паранекроза (пограничное состояние между жизнью и смертью). С этого состояния клетка может вернуться к нормальной жизни или погибнуть. После гибели клетки морфологически, в ядре различают следующие изменения:

1) кариопикноз — уплотнение ядра;

2) кариорексис — разложение ядра;

3) кариолизис — растворение ядра.

Функции: 1) хранение и передача генетической информации,

2) биосинтез белка, 3) образование субъединиц рибосом.

Хроматин

Хроматин (от греч. сhroma — цвет краска) — это основная структура интерфазного ядра, которая очень хорошо красится основными красителями и обуславливает для каждого типа клеток хроматиновый рисунок ядра.

Благодаря способности хорошо окрашиваться различными красителями и особенно основными этот компонент ядра и получил название «хроматин» (Флемминг 1880).

Хроматин является структурным аналогом хромосом и в интерфазном ядре представляет собой несущие ДНК тельца.

Морфологически различают два вида хроматина:

1) гетерохроматин;

2) эухроматин.

Гетерохроматин (heterochromatinum) соответствует частично конденсированным в интерфазе участкам хромосом и является функционально неактивным. Этот хроматин очень хорошо окрашивается и именно его можна видеть на гистологических препаратах.

Гетерохроматин в свою очередь делится на:

1) структурный; 2) факультативный.

Структурный гетерохроматин представляет участки хромосом, которые постоянно находятся в конденсированном состоянии.

Факультативный гетерохроматин — это гетерохроматин, способный деконденсироваться и превращатся в эухроматин.

Эухроматин — это деконденсированные в интерфазе участки хромосом. Это рабочий, функционально активный хроматин. Этот хроматин не окрашивается и не обнаруживается на гистологических препаратах.

Во время митоза весь эухроматин максимально конденсируется и входит в состав хромосом. В этот период хромосомы не выполняют никаких синтетических функций. В связи с этим хромосомы клеток могут находится в двух структурно-функциональных состояниях:

1) активном (рабочем), иногда они частично или полностью деконденсированы и с их участием в ядре происходят процессы транскрипции и редупликации;

2) неактивном (нерабочем, метаболического покоя), когда они максимально конденсированы выполняют функцию распределения и переноса генетического материала в дочерние клетки.

Иногда в отдельных случаях целая хромосома в период интерфазы может оставаться в конденсированном состоянии, при этом она имеет вид гладкого гетерохроматина. Например, одна из Х-хромосом соматических клеток женского организма подлежит гетерохроматизации на начальных стадиях эмбриогенеза (во время дробления) и не функционирует. Этот хроматин называется половых хроматином или тельцами Барра.

В разных клетках половой хроматин имеет различный вид:

а) в нейтрофильных лейкоцитах — вид барабанной палочки;

б) в эпителиальных клетках слизистой — вид полусферической глыбки.

Определение полового хроматина используется для установления генетического пола, а также для определения количества Х-хромосом в кариотипе индивидума (оно равняется количеству телец полового хроматина+1).

При электронно-микроскопических исследованиях установлено, что препараты выделенного интерфазного хроматина содержат элементарные хромосомные фибриллы толщиной 20-25 нм, которые состоят из фибрилл толщиной 10 нм.

В химическом отношении фибриллы хроматина представляют собой сложные комплексы дезоксирибонуклеопротеидов, в состав которых входят:

б) специальные хромосомные белки;

Количественное соотношение ДНК, белка и РНК составляет 1:1,3:0,2. На долю ДНК в препарате хроматина приходится 30-40%. Длина индивидуальных линейных молекул ДНК колеблется в непрямых пределах и может достигать сотен микрометров и даже сантиметров. Суммарная длина молекул ДНК во всех хромосомах одной клетки человека составляет около 170 см, что соответствует 6х10-12г.

Белки хроматина составляют 60-70% от его сухой массы и представлены двумя группами:

а) гистоновыми белками;

б) негистоновыми белками.

ЁГистоновые белки (гистоны ) — щелочные белки, содержащие основные аминокислоты (главным образом лизин, аргинин) располагаются неравномерно в виде блоков по длине молекулы ДНК. Один блок содержит 8 молекул гистонов, которые образуют нуклеосому. Размер нуклеосомы около 10 нм. Нуклеосома образуется путем компактизации и сверхспирализации ДНК, что приводит к укорачиванию длины хромосомной фибриллы примерно в 5 раз.

ЁНегистоновые белки составляют 20% от количества гистонов и в интерфазных ядрах образуют внутри ядра структурную сеть, которая носит название ядерного белкового матрикса. Этот матрикс представляет основу, которая определяет морфологию и метаболизм ядра.

Перихроматиновые фибриллы имеют толщину 3-5 нм, гранулы имеют диаметр 45нм и интерхроматиновые гранулы имеют диаметр 21-25 нм.

Ядрышко

Ядрышко (nucleolus) — самая плотная структура ядра, которая хорошо видна в живой неокрашенной клетке и является производным хромосомы, одним из ее локусов с наиболее высокой концентрацией и активным синтезом РНК в интерфазе, но не является самостоятельной структурой или органеллой.

ЁРазмер — 1-5 мкм.

ЁФорма — сферическая.

Ядрышко имеет неоднородную структуру. В световом микроскопе видна его тонковолокнистая организация.

Электронная микроскопия позволяет обнаружить два основных компонента:

а) гранулярный; б) фибриллярный.

Гранулярный компонент представлен гранулами с диаметром 15-20 нм, это созревающие субъединицы рибосом. Иногда гранулярный компонент образует нитчатые структуры — нуклеолонемы, толщиной около 0,2 мкм. Локализуется гранулярный компонент по периферии.

Фибриллярный компонент представляет собой рибонуклеопротеидные тяжи предшественников рибосом, которые сосредоточены в центральной части ядрышка.

Ультраструктура ядрышек зависит от активности синтеза РНК: при высоком уровне синтеза в ядрышке выявляется большое число гранул, при прекращении синтеза количество гранул снижается и ядрышки превращаются в плотные фибриллярные тяжи базофильной природы.

Ядерная оболочка

Ядерная оболочка (nuclolemma) состоит из:

Физика атомного ядра. Состав ядра.

Внешней ядерной мембраны (m. nuclearis externa),

2.Внутренней мембраны (m. nuclearis interna), которые разделены перинуклеарным пространством или цистерной ядерной оболочки (cisterna nucleolemmae), шириной 20-60 нм.

Каждая мембрана имеет толщину 7-8нм. В общем виде ядерная оболочка напоминает полый двухслойный мешок, который отделяет содержимое ядра от цитоплазмы.

Наружная мембрана ядерной оболочки , которая непосредственно контактирует с цитоплазмой клетки, имеет целый ряд структурных особенностей, которые позволяют отнести ее к собственно мембранной системе эндоплазматической сети. К таким особенностям относится: наличие на ней со стороны гиалоплазмы многочисленных полирибосом, а сама внешняя ядерная мембрана может прямо переходить в мембраны гранулярной эндоплазматической сети. Поверхность наружной ядерной мембраны в большинстве животных и растительных клеток не является гладкой и образует различных размеров выросты в сторону цитоплазмы в виде пузырьков или длинных трубчатых образований.

Внутренняя ядерная мембрана связана с хромосомным материалом ядра. Со стороны кариоплазмы к внутренней ядерной мембране прилегает так называемый фибриллярный слой, состоящий из фибрилл, но он характерен не для всех клеток.

Ядерная оболочка не является сплошной. Наиболее характерными структурами ядерной оболочки являются ядерные поры. Ядерные поры образуются в результате слияния двух ядерных мембран. При этом формируются округлые сквозные отверстия (перфорации, annulus pori), которые имеют диаметр около 80-90 нм. Эти отверстия ядерной оболочки заполнены сложноорганизованными глобуллярными и фибриллярными структурами. Совокупность мембранных перфораций и этих структур получило название комплекса поры (complexus pori). Комплекс поры состоит из трех рядов гранул по восемь штук в каждом ряду, диаметр гранул 25 нм, от этих гранул отходят фибриллярные отростки. Гранулы располагаются на границе отверстия в ядерной оболочке: один ряд лежит со стороны ядра, второй — со стороны цитоплазмы, третий в центральной части поры. Фибриллы, отходящие от периферических гранул, могут сходиться в центре и создавать, как бы перегородку, диафрагму поперек поры (diaphragma pori). Размеры пор у данной клетки обычно стабильны. Количество ядерных пор зависит от метаболической активности клеток: чем интенсивнее синтетические процессы в клетке, тем больше пор на единицу поверхности клеточного ядра.

ЁФункции:

1. Барьерная — отделяет содержимое ядра от цитоплазмы, ограничивает свободный транспорт макромолекул между ядром и цитоплазмой.

2. Создание внутриядерного порядка — фиксация хромосомного материала в трехмерном просвете ядра.

Кариоплазма

Кариоплазма — это жидкая часть ядра, в которой располагаются ядерные структуры, она является аналогом гиалоплазмы в цитоплазматической части клетки.

Репродукция клеток

Одним из наиболее важных биологических явлений, которое отражает общие закономерности и есть неотъемлемым условием существовния биологических систем в течение достаточно длительного периода времени является репродукция (воспроизведение) их клеточного состава. Размножение клеток, согласно клеточной теории, осуществляется путем деления исходной. Это положение является одним из основных в клеточной теории.

Ядро (nucleus) клетки

ФУНКЦИИ ЯДРА

Хроматин –

Хромосомы

которых входят:

– гистоновые белки

– небольшие количества РНК;

Ядерный матрикс

Состоит из 3 компонентов:

стилающий ядерную оболочку.

Что такое ядро - это в биологии: свойства и функции

Внутриядерная сеть (остов).

3. «Остаточное» ядрышко.

Она состоит из:

– наружной ядерной мембраны;

Нуклеоплазма (кариоплазма) – жидкий компонент ядра, в ко-тором располагаются хроматин и ядрышки. Содержит воду и ряд

Ядрышко

Дата публикования: 2015-02-03; Прочитано: 1053 | Нарушение авторского права страницы

Ядро (nucleus) клетки - система генетической детерминации и регуляции белкового синтеза.

ФУНКЦИИ ЯДРА

● хранение и поддержание наследственной информации

● реализация наследственной информации

Ядро состоит из хроматина, ядрышка, кариоплазмы (нуклеоплазмы) и ядерной оболочки, отделяющей его от цитоплазмы.

Хроматин – это зоны плотного вещества в ядре, которое хо-

рошо воспринимает разные красители, особенно основные.

В неделящихся клетках хроматин обнаруживается в виде глыбок и гранул, что является интерфазной формой существования хромосом.

Хромосомы – фибриллы хроматина, представляющие собой сложные комплексы дезоксирибонуклеопротеидов (ДНП), в состав

которых входят:

– гистоновые белки

– негистоновые белки – составляют 20%, это ферменты, выполняют структурную и регуляторную функции;

– небольшие количества РНК;

– небольшие количества липидов, полисахаридов, ионов металла.

Ядерный матрикс – является каркасной внутриядерной систе-

мой, объединяющей основой для хроматина, ядрышка, ядерной оболочки. Эта структурная сеть представляет собой основу, определяющую морфологию и метаболизм ядра.

Состоит из 3 компонентов:

1. Ламина (A, B, C) – периферический фибриллярный слой, под-

стилающий ядерную оболочку.

2. Внутриядерная сеть (остов).

3. «Остаточное» ядрышко.

Ядерная оболочка (кариолемма) – это оболочка, отделяющая содержимое ядра от цитоплазмы клетки.

Она состоит из:

– наружной ядерной мембраны;

– внутренней ядерной мембраны, между которыми находится перинуклеарное пространство;

– двумембранная ядерная оболочка имеет поровый комплекс.

Нуклеоплазма (кариоплазма) – жидкий компонент ядра, в ко-тором располагаются хроматин и ядрышки.

Ядро. Компоненты ядра

Содержит воду и ряд

растворенных и взвешенных в ней веществ: РНК, гликопротеинов,

ионов, ферментов, метаболитов.

Ядрышко – самая плотная структура ядра, образовано специа-лизированными участками – петлями хромосом, которые называются ядрышковыми организаторами.

Выделяют 3 компонента ядрышка:

1. Фибриллярный компонент представляет собой первичные транскрипты р-РНК.

2. Гранулярный компонент представляет собой скопление пред-

шественников субъединиц рибосом.

3. Аморфный компонент – участки ядрышкового организатора,

Дата публикования: 2015-02-03; Прочитано: 1052 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Ядро как основной регуляторный компонент клетки. Его строение и функции.

Ядро — обязательная часть клеток эукариот. Это основной регуляторный компонент клет-ки. Оно отвечает за хранение и передачу наследственной информации, управляет всеми обменными процессами в клетке. Не органоид, а компонент клетки.

Ядро состоит из:

1) ядерную оболочку (ядерную мембрану), через поры которой осуществляется обмен между ядром клетки и цитоплазмой.

2) ядерный сок, или кариоплазму,- полужидкую, слабо окрашиваемую плазматическую массу, заполняющую все ядра клетки и содержащую в себе остальные компоненты ядра;

3) хромосомы, которые в неделящемся ядре видны только с помощью специальных методов микроскопии. Совокупность хромосом клетки называется кариотипом. Хроматин на окрашенных препаратах клетки представляет собой сеть тонких тяжей (фибрилл), мелких гранул или глыбок.

4) одно или несколько сферических телец - ядрышек, являющихся специализированной частью ядра клетки и связанных с синтезом рибонуклеиновой кислоты и белков.

два состояния ядра:

1. интерфазное ядро — имеет ядер. оболочку- кариолемму.

2. ядро при делений клетки. присутствует только хроматин в разном состоянии.

ядрышки включают две зоны:

1. внутренняя- фибриллярная- молекул белка и пре РНК

2. наружняя- гранулярная- формируют субъединицы рибосом.

Оболочка ядра состоит из двух мембран, разделенных перинуклеарным пространством. Обе они пронизаны многочисленными порами, благодаря которым возможен обмен веществами между ядром и цитоплазмой.

Основные компоненты ядра — хромосомы, образованные из молекулы ДНК и различных белков. В световом микроскопе они хорошо различимы лишь в период клеточного деления (митоза, мейоза). В неделящейся клетке хромосомы имеют вид длинных тонких нитей, распределенных по всему объему ядра.

Главные функции клеточного ядра следующие:

  1. хранение информации;
  2. передача информации в цитоплазму с помощью транскрипции, т. е. синтеза переносящей информацию и-РНК;
  3. передача информации дочерним клеткам при репликации — делении клеток и ядер.
  4. регулирует биохимические, физиологические и морфологические процессы в клетке.

В ядре происходит репликация - удвоение молекул ДНК, а также транскрипция - синтез молекул РНК на матрице ДНК. В ядре же синтезированные молекулы РНК претерпевают некоторые модификации (например, в процессе сплайсинга из молекул матричной РНК исключаются незначащие, бессмысленные участки), после чего выходят в цитоплазму. Сборка рибосом также происходит в ядре, в специальных образованиях, называемых ядрышками. Компартмент для ядра - кариотека - образован за счёт расширения и слияния друг с другом цистерн эндоплазматической сети таким образом, что у ядра образовались двойные стенки за счёт окружающих его узких компартментов ядерной оболочки. Полость ядерной оболочки называется — люменом или перинуклеарным пространством . Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной — жесткой белковой структурой, образованной белками-ламинами, к которой прикреплены нити хромосомной ДНК. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой.

12. Двумембранные органоиды (митохондрии, пластиды). Их строение и функции.

Митохондрии - это структуры округлой или палочковидной, нередко ветвящейся формы толщиной 0,5 мкм и длиной обычно до 5-10 мкм.

Оболочка митохондрий состоит из двух мембран, различающихся по химическому составу, набору ферментов и функциям. Внутренняя мембрана образует впячивания листовидной (кристы) или трубчатой (тубулы) формы. Пространство, ограниченное внутренней мембраной, составляет матрикс органеллы . В нем с помощью электронного микроскопа обнаруживаются зерна диаметром 20-40 нм. Они накапливают ионы кальция и магния, а также полисахариды, например гликоген.
В матриксе размещен собственный аппарат биосинтеза белка органеллы. Он представлен 2-6 копиями кольцевой и лишенной гистонов (как у прокариот) молекулы ДНК, рибосомами, набором транспортных РНК (тРНК), ферментами редупликации ДНК, транскрипции и трансляции наследственной информации. Главная функция митохондрий состоит в ферментативном извлечении из определенных химических веществ энергии (путем их окисления) и накоплении энергии в биологически используемой форме (путем синтеза молекул аденозинтрифосфата -АТФ). В целом этот процесс называется окислительным фосфорилированием . Среди побочных функций митохондрий можно назвать участие в синтезе стероидных гормонов и некоторых аминокислот (глутаминовая).

Пластиды – это полуавтономные (могут существовать относительно автономно от ядерной ДНК клетки) двумембранные органоиды, характерные для фотосинтезирующих эукариотных организмов. Различают три основных типа пластид: хлоропласты, хромопласты и лейкопласты. Совокупность пластид в клетке называют пластидомом . Каждый их этих типов при определенных условиях может переходить один в другой. Как и митохондрии, пластиды содержат собственные молекулы ДНК. Поэтому они также способны размножаться независимо от деления клетки. Пластиды характерны только для растительных клеток.

Хлоропласты. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр - от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом . Группа тилакоидов, уложенных наподобие стопки монет, называется граной . Граны связываются друг с другом уплощенными каналами - ламеллами. В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой . В строме имеются кольцевая «голая» ДНК, рибосомы, ферменты цикла Кальвина, зерна крахмала. Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н+. Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Хлоропласты низших растений называют хроматофорами.

Лейкопласты . Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Амилопласты -синтезируют и накапливают крахмал, элайопласты - масла, протеинопласты - белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты - каротиноиды , придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях и др. Хромопласты считаются конечной стадией развития пластид.

Пластиды могут взаимно превращаться друг в друга: лейкопласты — хлоропласты — хромопласты.

Одномембранные органоиды (ЭПС, аппарат Гольджи, лизосомы). Их строение и функции.

Канальцевая и вакуолярная системы образованы сообщающимися или отдельными трубчатыми или уплощенными (цистерна) полостями, ограниченными мембранами и распространяющимися по всей цитоплазме клетки. В названной системе выделяют шероховатую и гладкую цитоплазматическую сети . Особенность строения шероховатой сети состоит в прикреплении к ее мембранам полисом. В силу этого она выполняет функцию синтеза определенной категории белков, преимущественно удаляемых из клетки, например секретируемых клетками желез. В области шероховатой сети происходит образование белков и липидов цитоплазматических мембран, а также их сборка. Плотно упакованные в слоистую структуру цистерны шероховатой сети являются участками наиболее активного белкового синтеза и называются эргастоплазмой.

Мембраны гладкой цитоплазматической сети лишены полисом. Функционально эта сеть связана с обменом углеводов, жиров и других веществ небелковой природы, например стероидных гормонов (в половых железах, корковом слое надпочечников). По канальцам и цистернам происходит перемещение веществ, в частности секретируемого железистой клеткой материала, от места синтеза в зону упаковки в гранулы. В участках печеночных клеток, богатых структурами гладкой сети, разрушаются и обезвреживаются вредные токсические вещества, некоторые лекарства (барбитураты). В пузырьках и канальцах гладкой сети поперечно-полосатой мускулатуры сохраняются (депонируются) ионы кальция, играющие важную роль в процессе сокращения.

Комплекс Гольджи -представляет собой стопку плоских мембранных мешочков, которые называются цистернами . Цистерны полностью изолированы друг от друга и не соединяются между собой. По краям от цистерн ответвляются многочисленные трубочки и пузырьки. От ЭПС время от времени отшнуровываются вакуоли (пузырьки) с синтезированными веществами, которые перемещаются к комплексу Гольджи и соединяются с ним. Вещества, синтезированные в ЭПС, усложняются и накапливаются в комплексе Гольджи. Функции комплекса Гольджи :1- В цистернах комплекса Гольджи происходит дальнейшее химическое преобразование и усложнение веществ, поступивших в него из ЭПС. Например, формируются вещества, необходимые для обновления мембраны клетки (гликопротеиды, гликолипиды),полисахариды.

2- В комплексе Гольджи происходит накопление веществ и их временное «хранение»

3- Образованные вещества «упаковываются» в пузырьки (в вакуоли) и в таком виде перемещаются по клетке.

4- В комплексе Гольджи образуются лизосомы (сферические органоиды с расщепляющими ферментами).

Лизосомы — мелкие сферические органоиды, стенки которых образованы одинарной мембраной; содержат литические (расщепляющие) ферменты. Сначала лизосомы, отшнуровавшиеся от комплекса Гольджи, содержат неактивные ферменты. При определенных условиях их ферменты активизируются. При слиянии лизосомы с фагоцитозной или пиноцитозной вакуолью образуется пищеварительная вакуоль, в которой происходит внутриклеточное переваривание различных веществ.

Функции лизосом :1- Осуществляют расщепление веществ, поглощенных в результате фагоцитоза и пиноцитоза. Биополимеры расщепляются до мономеров, которые поступают в клетку и используются на ее нужды.

Ядро и его структурные компоненты

Например, они могут быть использованы для синтеза новых органических веществ или могут подвергаться дальнейшему расщеплению для получения энергии.

2- Разрушают старые, поврежденные, избыточные органоиды. Ращепление органоидов может происходить и во время голодания клетки.

Вакуоли — сферические одномембранные органоиды, представляющие собой резервуары воды и растворенных в ней веществ. К вакуолям относятся: фагоцитозные и пиноцитозные вакуоли , пищеварительные вакуоли, пузырьки, отшнуровывающиеся от ЭПС и комплекса Гольджи. Вакуоли животной клетки — мелкие, многочисленные, но их объем не превышает 5% от всего объема клетки. Их основная функция — транспорт веществ по клетке, осуществление взаимосвязи между органоидами.

В клетке растений на долю вакуолей приходится до 90% объема.

В зрелой растительной клетки вакуоль одна, занимает центральное положение. Мембрана вакуоли растительной клетки — тонопласт, ее содержимое — клеточный сок. Функции вакуолей в растительной клетке: поддержание клеточной оболочки в напряжении, накопление различных веществ, в том числе отходов жизнедеятельности клетки. Вакуоли поставляют воду для процессов фотосинтеза. Могут входить:

— запасные вещества, которые могут использоваться самой клеткой (органические кислоты, аминокислоты, сахара, белки). — вещества, которые выводятся из обмена веществ клетки и накапливаются в вакуоли (фенолы, дубильные вещества, алкалоиды и др.) — фитогормоны, фитонциды,

— пигменты (красящие вещества), которые придают клеточному соку пурпурный, красный, синий, фиолетовый цвет, а иногда желтый или кремовый. Именно пигменты клеточного сока окрашивают лепестки цветков, плоды, корнеплоды

14.Немембранные органоиды (микротрубочки, клеточный центр, рибосомы). Их строение и функции. Рибосома — немембранный органоид клетки, осуществляющий биосинтез белка. Состоит из двух субъединиц — малой и большой. Рибосома состоит из 3-4 молекул р-РНК, образующих ее каркас, и нескольких десятков молекул различных белков. Рибосомы синтезируются в ядрышке. В клетке рибосомы могут располагаться на поверхности гранулярной ЭПС или в гиалоплазме клетки в виде полисом. Полисома — это комплекс и-РНК и нескольких рибосом, считывающих с нее информацию. Функция рибосом — биосинтез белка. Если рибосомы располагаются на ЭПС, то синтезируемые ими белки используются на нужды всего организма, рибосомы гиалоплазмы синтезируют белки на нужды самой клетки. Рибосомы прокариотических клеток мельче, чем рибосомы эукариот. Такие же мелкие рибосомы находятся в митохондриях и пластидах.

Микротрубочки — полые цилиндрические структуры клетки, состоящие из несократимогобелка тубулина. Микротрубочки не способны к сокращению. Стенки микротрубочки образованы 13 нитями белка тубулина. Микротрубочки располагаются в толще гиалоплазмы клеток.

Реснички и жгутики — органоиды движения. Главная функция — передвижение клеток или перемещение вдоль клеток окружающей их жидкости или частиц. В многоклеточном организме реснички характерны для эпителия дыхательных путей, маточных труб, а жгутики — для сперматозоидов. Реснички и жгутики отличаются только размерами — жгутики более длинные. В их основе — микротрубочки, расположенные по системе 9(2) + 2. Это значит, что 9 двойных микротрубочек (дуплетов) образуют стенку цилиндра, в центре которого располагаются 2 одиночные микротрубочки. Опорой ресничек и жгутиков являются базальные тельца. Базальное тельце имееет цилиндрическую форму, образовано 9 тройками (триплетами) микротрубочек, в центре базального тельца микротрубочек нет.

Кле точный центр митотический центр, постоянная структура почти всех животных и некоторых растительных клеток, определяет полюса делящейся клетки (см. Митоз). Клеточный центр обычно состоит из двух центриолей - плотных гранул размером 0,2-0,8 мкм, расположенных под прямым углом друг к другу. При образовании митотического аппарата центриоли расходятся к полюсам клетки, определяя ориентировку веретена деления клетки. Поэтому правильнее К. ц. называть митотическим центром , отражая этим его функциональное значение, тем более что лишь в некоторых клетках К. ц. расположен в ее центре. В ходе развития организма изменяются как положение К. ц. в клетках, так и форма его. При делении клетки каждая из дочерних клеток получает пару центриолей. Процесс их удвоения происходит чаще в конце предыдущего клеточного деления. Возникновение ряда патологических форм деления клетки связано с ненормальным делением К. ц.

Атом - это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z - порядковый номер данного элемента в периодической системе химических элементов, е - величина элементарного электрического заряда.

Электрон - это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К - оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц - протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны - это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента - водорода. Число протонов в ядре равно Z. Нейтрон - это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А - Z, где А - массовое число данного изотопа (см. ). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны - . Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos - неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е - элементарный электрический заряд, равный по величине заряду электрона (4,8·10 -10 эл.-ст. ед.), и Z - атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А-Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 -8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы - электроны, протоны, атомы и т. д.,- кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е 0 , в какое-либо из возбужденных состояний E i происходит при поглощении определенной порции энергии Е i - Е 0 . Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= E i - Е k где h - постоянная Планка (6,62·10 -27 эрг·сек), v - частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

Вопросы «Из чего состоит материя?», «Какова природа материи?» всегда занимали человечество. Еще с древнейших времен философы и ученые искали ответы на эти вопросы, создавая как реалистичные, так и совершенно удивительные и фантастические теории и гипотезы. Однако буквально столетие назад человечество подошло к разгадке этой тайны максимально близко, открыв атомарную структуру материи. Но каков состав ядра атома? Из чего все состоит?

От теории к реальности

К началу двадцатого века атомарная структура перестала быть только гипотезой, а стала абсолютным фактом. Оказалось, что состав ядра атома - понятие очень сложное. В его состав входят Но возник вопрос: состав атома и включают в себя разное количество этих зарядов или нет?

Планетарная модель

Изначально представляли, что атом построен очень похоже на нашу Солнечную систему. Однако довольно быстро оказалось, что подобное представление не совсем верно. Проблематика чисто механического переноса астрономического масштаба картины в область, которая занимает миллионные доли миллиметра, повлекла за собой существенное и резкое изменение свойств и качеств явлений. Главное различие заключалось в гораздо более жестких законах и правилах, по которым построен атом.

Недостатки планетарной модели

Во-первых, так как атомы одного рода и элемента по параметрам и свойствам должны быть совершенно одинаковы, то и орбиты у электронов этих атомов тоже должны быть одинаковы. Однако законы движения астрономических тел не смогли дать ответы на эти вопросы. Второе противоречие заключается в том, что движение электрона по орбите, если применить к нему хорошо изученные физические законы, должно обязательно сопровождаться перманентным выделением энергии. В результате этот процесс привел бы к истощению электрона, который в конечном итоге затухнул бы и даже упал на ядро.

Волновая структура материи

В 1924 году молодой аристократ Луи де Бройль выдвинул мысль, которая перевернула представления научного сообщества о таких вопросах как состав атомных ядер. Идея заключалась в том, что электрон - это не просто движущийся шарик, который вращается вокруг ядра. Это размытая субстанция, которая движется по законам, напоминающим распространение волн в пространстве. Довольно быстро это представление распространили и на движение любого тела в целом, пояснив, что мы замечаем только одну сторону этого самого движения, а вот вторая фактически не проявляется. Мы можем видеть распространение волн и не заметить движение частицы, либо же наоборот. На самом же деле обе эти стороны движения всегда существуют, и вращение электрона по орбите - это не только перемещение самого заряда, но также и распространение волн. Такой подход кардинально отличается от принятой ранее планетарной модели.

Элементарная основа

Ядро атома - это центр. Вокруг него и вращаются электроны. Свойствами именно ядра обусловлено все остальное. Говорить о таком понятии как состав ядра атома необходимо с самого важного момента - с заряда. В составе атома наблюдается определенное которые несут отрицательный заряд. Само же ядро обладает положительным зарядом. Из этого можно сделать определенные выводы:

  1. Ядро - это заряженная положительно частица.
  2. Вокруг ядра находится пульсирующая атмосфера, создаваемая зарядами.
  3. Именно ядро и его характеристики определяют количество электронов в атоме.

Свойства ядра

Медь, стекло, железо, дерево обладают одинаковыми электронами. Атом может потерять пару электронов или даже все. Если ядро остается заряжено положительно, то оно способно притянуть нужное количество отрицательно заряженных частиц из других тел, что позволит ему сохраниться. Если атом теряет некоторое количество электронов, то положительный заряд у ядра будет больше, чем остаток отрицательных зарядов. В этом случае и весь атом приобретет избыточный заряд, и его можно будет назвать положительным ионом. В некоторых случаях атом может привлечь большее количество электронов, и тогда он станет отрицательно заряженным. Следовательно, его можно будет назвать отрицательным ионом.

Сколько весит атом?

Масса атома в основном определяется ядром. Электроны, которые входят в состав атома и атомного ядра, весят мене одной тысячной от общей массы. Так как массу считают мерой запаса энергии, которым обладает вещество, то этот факт считается неимоверно важным при изучении такого вопроса, как состав ядра атома.

Радиоактивность

Наиболее сложные вопросы появились после открытия Радиоактивные элементы излучают альфа-, бета- и гамма-волны. Но такое излучение должно иметь источник. Резерфорд в 1902 году показал, что таким источником является сам атом, а точнее сказать, ядро. С другой стороны, радиоактивность - это не только испускание лучей, а и перевод одного элемента в другой, с совершенно новыми химическими и физическими свойствами. То есть радиоактивность - это изменение ядра.

Что мы знаем о ядерной структуре?

Почти сто лет назад физик Проут выдвинул мысль о том, что элементы в периодической системе не являются бессвязными формами, а представляют собой комбинации Поэтому можно было ожидать, что и заряды, и массы ядер будут выражаться через целые и кратные заряды самого водорода. Однако это не совсем так. Изучая свойства атомных ядер при помощи электромагнитных полей, физик Астон установил, что элементы, атомные веса у которых не являлись целыми и кратными, на самом деле - комбинация разных атомов, а не одно вещество. Во всех случаях, когда атомный вес не целое число, мы наблюдаем смесь разных изотопов. Что это такое? Если говорить про состав ядра атома, изотопы - атомы с одинаковыми зарядами, но с разными массами.

Эйнштейн и ядро атома

Теория относительности говорит, что масса - это не мера, по которой определяют количество материи, а мера энергии, которой обладает материя. Соответственно, материю можно измерить не массой, а зарядом, который составляет эту материю, и энергией заряда. Когда одинаковый заряд приближается к другому такому же, энергия будет увеличиваться, в обратном случае - уменьшаться. Это, несомненно, не означает изменение материи. Соответственно, с этой позиции ядро атома - это не источник энергии, а скорее, остаток после ее выделения. Значит, существует некое противоречие.

Нейтроны

Супруги Кюри при бомбардировке альфа-частицами бериллия открыли некие непонятные лучи, которые, сталкиваясь с ядром атома, отталкивают его с огромной силой. Однако они способны проходить сквозь большую толщину вещества. Это противоречие разрешилось тем, что данная частица оказалась с нейтральным электрическим зарядом. Соответственно, ее и назвали нейтроном. Благодаря дальнейшим исследованиям оказалось, что почти такая же, как и у протона. В общем-то говоря, нейтрон и протон невероятно похожи. С учетом этого открытия определенно можно было установить, что в состав ядра атома входят и протоны, и нейтроны, причем в одинаковых количествах. Все постепенно становилось на места. Число протонов - атомный номер. Атомный вес - это сумма масс нейтронов и протонов. Изотопом можно же назвать элемент, в котором количество нейтронов и протонов будет не равным друг другу. Как уже говорилось выше, в таком случае, хотя элемент остается фактическим тем же самым, его свойства могут существенно измениться.

Атом состоит из положительно заряженного ядра и окружающих его электронов. Атомные ядра имеют размеры примерно 10 -14 … 10 -15 м (линейные размеры атома – 10 -10 м).

Атомное ядро состоит из элементарных частиц  протонов и нейтронов. Протонно-нейтронная модель ядра была предложена российским физиком Д. Д. Иваненко, а впоследствии развита В. Гейзенбергом.

Протон (р ) имеет положительный заряд, равный заряду электрона, и массу покоят p = 1,6726∙10 -27 кг 1836m e , гдеm e масса электрона. Нейтрон (n )нейтральная частица с массой покояm n = 1,6749∙10 -27 кг 1839т e ,. Массу протонов и нейтронов часто выражают в других единицах – в атомных единицах массы (а.е.м., единица массы, равная 1/12 массы атома углерода
). Массы протона и нейтрона равны приблизительно одной атомной единице массы. Протоны и нейтроны называют­сянуклонами (от лат.nucleus ядро). Общее число нуклонов в атомном ядре называ­етсямассовым числомА ).

Радиусы ядер возрастают с увеличением массового числа в соответствии с соотношением R = 1,4А 1/3 10 -13 см.

Эксперименты показывают, что ядра не имеют резких границ. В центре ядра существует определенная плотность ядерного вещества, и она постепенно уменьшается до нуля с увеличением расстояния от центра. Из-за отсутствия четко определенной границы ядра его «радиус» определяется как расстояние от центра, на котором плотность ядерного вещества уменьшается в два раза. Среднее распределение плотности материи для большинства ядер оказывается не просто сферическим. Большинство ядер деформировано. Часто ядра имеют форму вытянутых или сплющенных эллипсоидов

Атомное ядро характеризуетсязарядом Ze, гдеZ зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева.

Ядро обозначается тем же символом, что и нейтральный атом:
, гдеX символ химического элемента,Z атомный номер (число протонов в ядре),А массовое число (число нуклонов в ядре). Массовое числоА приблизительно равно массе ядра в атомных единицах массы.

Так как атом нейтрален, то заряд ядра Z определяет и число электронов в атоме. От числа электронов зависитих распределение по состояниям в атоме. Заряд ядра определяет специфику данного химического элемента, т. е. определяет число электро­нов в атоме, конфигурациюих электронных оболочек, величину и характер внутри­атомного электрического поля.

Ядра с одинаковыми зарядовыми числами Z , но с разными массовыми числамиА (т. е. с разными числами нейтронов N = A – Z ), называются изотопами, а ядра с одинаковымиА, но разнымиZ – изобарами. Например, водород (Z = l) имеет три изотопа: Н – протий (Z = l,N = 0), Н – дейтерий (Z = l,N = 1), Н – тритий (Z = l,N = 2), олово – десять изотопов и т. д. В подавляющем большинстве случаев изотопы одного и того же химического элемента обладают одинаковыми химическими и почти одинаковыми физическими свойствами.

Е , МэВ

Уровни энергии

и наблюдаемые переходы для ядра атома бора

Квантовая теория строго ограничивает значения энергий, которыми могут обладать составные части ядер. Совокупности протонов и нейтронов в ядрах могут находиться только в определенных дискретных энергетических состояниях, характерных для данного изотопа.

Когда электрон переходит из более высокого в более низкое энергетическое состояние, разность энергий излучается в виде фотона. Энергия этих фотонов имеет порядок нескольких электронвольт. Для ядер энергии уровней лежат в интервале примерно от 1 до 10 МэВ. При переходах между этими уровнями испускаются фотоны очень больших энергий (γ–кванты). Для иллюстрации таких переходов на рис. 6.1 приведены пять первых уровней энергии ядра
.Вертикальными линиями указаны наблюдаемые переходы. Например, γквант с энергией 1,43 МэВ испускается при переходе ядра из состояния с энергией 3,58 МэВ в состояние с энергией 2,15 МэВ.