Понятие фотосинтеза в биологии. Биологический процесс фотосинтеза и его значение в природе

В растениях (преимущественно в их листьях) на свету протекает фотосинтез. Это процесс, при котором из углекислого газа и воды образуется органическое вещество глюкоза (один из видов сахаров). Далее глюкоза в клетках превращается в более сложное вещество крахмал. И глюкоза, и крахмал являются углеводами.

В процессе фотосинтеза образуется не только органическое вещество, но также, в качестве побочного продукта, выделяется кислород.

Углекислый газ и вода - это неорганические вещества, а глюкоза и крахмал - органические. Поэтому часто говорят, что фотосинтез - это процесс образования органических веществ из неорганических на свету. Только растения, некоторые одноклеточные эукариоты и некоторые бактерии способны к фотосинтезу. В клетках животных и грибов такого процесса нет, поэтому они вынуждены поглощать из окружающей среды органические вещества. В связи с этим растения называют автотрофами, а животных и грибов - гетеротрофами.

Процесс фотосинтеза у растений протекает в хлоропластах, в которых содержится зеленый пигмент хлорофилл.

Итак, для протекания фотосинтеза необходимы:

    хлорофилл,

    углекислый газ.

В процессе фотосинтеза образуются:

    органические вещества,

    кислород.

Растения приспособлены к улавливанию света. У многих травянистых растений листья собраны в так называемую прикорневую розетку, когда листья не затеняют друг друга. Для деревьев характерна листовая мозаика, при которой листья растут так, чтобы как можно меньше затенять друг друга. У растений листовые пластинки могут поворачиваться к свету за счет изгибов черешков листьев. При всем этом существуют тенелюбивые растения, которые могут расти только в тени.

Вода для фотосинтеза поступает в листья из корней по стеблю. Поэтому важно, чтобы растение получало достаточное количество влаги. При недостатке воды и некоторых минеральных веществ процесс фотосинтеза тормозится.

Углекислый газ для фотосинтеза берется непосредственно из воздуха листьями. Кислород, который вырабатывается растением в процессе фотосинтеза, наоборот, выделяется в воздух. Газообмену способствуют межклетники (промежутки между клетками).

Образовавшиеся в процессе фотосинтеза органические вещества отчасти используются в самих листьях, но в основном оттекают во все другие органы и превращаются в другие органические вещества, используются при энергетическом обмене, превращаются в запасные питательные вещества.

Определение

Фотосинтез - процесс синтеза органических веществ из неорганических (воды и углекислого газа) с использованием энергии солнечного света.

Первые опыты по фотосинтезу были проведены Джозефом Пристли в XVIII в., когда он обратил внимание на «порчу» воздуха в герметичном сосуде горящей свечой (воздух переставал быть способен поддерживать горение, помещенные в него животные задыхались) и «исправление» его растениями. Пристли сделал вывод, что растения выделяют кислород, который необходим для дыхания и горения.

Определение

Фототрофы - организмы, использующие фотосинтез.

Фотоавтотрофами являются большинство растений и некоторые бактерии.

фотосинтетические пигменты

Фотосинтез может осуществляться только с помощью определенных веществ - пигментов .

Фотосинтетические пигменты высших растений делятся на две группы: хлорофиллы и каротиноиды .

Роль этих пигментов состоит в том, чтобы поглощать свет и превращать его энергию в химическую энергию. Пигменты локализованы в мембранах хлоропластов, и хлоропласты обычно располагаются в клетке так, чтобы их мембраны находились под прямым углом к источнику света, что гарантирует максимальное поглощение света.

Данные о наличии у красных водорослей хлорофилла d в настоящее время не подтверждаются - по всей видимости, в экспериментах пробы были загрязнены цианобактериями, у которых этот тип хлорофилла действительно встречается. Однако во многих источниках можно по-прежнему встретить информацию о наличии хлорофилла d у красных водорослей.

У растений в фотосинтезе участвует пигмент хлорофилл, который содержится в хлоропластах на мембранах тилакоидов . Хлорофилл придает хлоропластам и всему растению зеленую окраску.

По химическому строению хлорофилл напоминает белок крови - гемоглобин. Он имеет такое же порфириновое кольцо, только у гемоглобина в центре этого кольца находится атом железа, а у хлорофилла - магний . Порфириновое кольцо представляет собой почти плоскую пластинку, от которой отходят две органических цепочки, одна из которых очень длинная, отходит под углом, и с ее помощью хлорофилл крепится к мембранам.

Уникальное свойство хлорофилла: он умеет поглощать энергию солнечного света, переходя в возбужденное состояние.

Хлорофиллы поглощают главным образом красный и сине-фиолетовый свет. Зеленый свет они отражают и потому придают растениям характерную зеленую окраску, если только ее не маскируют другие пигменты. Существует несколько форм этого пигмента, которые различаются своим расположением в мембране. Каждая форма слегка отличается от других и по положению максимума поглощения в красной области; например, этот максимум может быть при 670, 680, 690 или 700 нм.

Хлорофилл а - единственный пигмент, который имеется у всех фотосинтезирующих растений и играет у них центральную роль в фотосинтезе.

Спектры поглощения хлорофиллов a и b и спектр каротиноидов.

Каротиноиды - пигменты желтого, красного и оранжевого цвета. Они придают окраску цветкам и плодам растений. Каротиноиды постоянно присутствуют в листьях, но незаметны из-за присутствия хлорофилла. Зато осенью, когда хлорофилл разрушается, каротиноиды становятся хорошо видны. Именно они придают листьям желтую и красную окраску.

Функции каротиноидов:

    поглощают солнечный свет (особенно в коротковолновой - сине-фиолетовой - части спектра) и поглощенную энергию передают хлорофиллу;

    защищают хлорофилл от избытка света и от окисления кислородом, выделяющимся при фотосинтезе.

Пигменты бактерий

У бактерий фотосинтетическими пигментами являются бактериохлорофилл, фикобилины и каротиноиды.

Фикобилины - красные и синие пигменты (используют зеленую часть солнечного спектра), содержащиеся у цианобактерий и некоторых водорослей. Фикобилины представлены пигментами фикоцианином, фикоэритрином (окисленный фикоцианин) и аллофикоцианином.

Красные водоросли в основном содержат фикоэритрин, а цианобактерии - фикоцианин.

В отличие от хлорофиллов и каротиноидов, расположенных в мембранах, фикобилины концентрируются в особых гранулах (фикобилисомах ), тесно связанных с мембранами тилакоидов. Фикобилины образуют прочные соединения с белками (фикобилинпротеиды). Связь между фикобилинами и белками разрушается только кислотой. Предполагается, что карбоксильные группы пигмента связываются с аминогруппами белка.

Фикобилины поглощают лучи в зеленой и желтой частях солнечного спектра. Это та часть спектра, которая находится между двумя основными линиями поглощения хлорофилла.

Сравнение спектров поглощения фикобилинов со спектральным составом света, в котором проходит фотосинтез у цианобактерий и красных водорослей, показывает, что они очень близки. Это позволяет считать, что фикобилины поглощают энергию света и, подобно каротиноидам, передают ее на молекулу хлорофилла, после чего она используется в процессе фотосинтеза.

Наличие фикобилинов у водорослей является примером эволюционной адаптации к использованию участков солнечного спектра, которые проникают сквозь толщу морской воды (хроматическая адаптация). Как известно, красные лучи, соответствующие основной линии поглощения хлорофилла, поглощаются, проходя через толщу воды. Наиболее глубоко проникают зеленые лучи, которые поглощаются не хлорофиллом, а фикобилинами.

В начале 1970-х гг. у галофильных (обитающих в соленых водах) архей был обнаружен еще один фотосинтетический пигмент - бактериородопсин .

фотосинтез

Процесс фотосинтеза включает 2 фазы:

световая фаза:

    на свету;

    на мембранах тилакоидов;

темновая фаза:

    на свету и в темноте;

    в строме хлоропласта.

Cветовая фаза фотосинтеза

В хлоропластах содержится очень много молекул хлорофилла. Сам процесс происходит примерно в 1 % молекул хлорофилла. Другие же молекулы хлорофилла, каротиноидов и других веществ образуют особые антенные, а также светособирающие комплексы (ССК). Они, как антенны, поглощают кванты света и передают возбуждение в особые реакционные центры. Эти центры находятся в фотосистемах, которых у растений две: фотосистема II и фотосистема I . В них имеются особые молекулы хлорофилла: соответственно, в фотосистеме II - P680, а в фотосистеме I - P700. Они поглощают свет именно такой длины волны (680 и 700 нм).

    Молекулы хлорофилла двух фотосистем поглощают квант света. Один электрон каждой из них переходит на более высокий энергетический уровень (возбуждается).

    Возбужденные электроны обладает очень высокой энергией. Они отрываются и поступают в особую цепь переносчиков в мембранах тилакоидов - молекулы НАДФ + , превращая их в восстановленный НАДФ. Таким образом, энергия света превращается в энергию восстановленного переносчика.

    В молекулах хлорофилла на месте электронов после их отрыва образуются "дырки" с положительным зарядом.

    Фотосистема I восполняет потерю электронов через систему переносчиков электронов от фотосистемы II.

    Фотосистема II забирает электрон у воды (фотолиз воды ), при этом образуются ионы водорода.

    Фотолиз воды - процесс распада воды под действием солнечного света.

    Побочным продуктом распада воды является кислород, выделяющийся в атмосферу.

    $Н^+$, образовавшиеся при фотолизе воды, переносятся в полость тилакоида.

    В полости тилакоида накапливается большой избыток ионов водорода, что приводит к созданию на мембране тилакоида крутого градиента концентрации этих ионов.

    Он используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфата.

    Происходит перенос ионов водорода $Н^+$ через мембрану восстановленным переносчиком НАДФ (никотинамидадениндинуклеотидфосфатом) с образованием НАДФ*Н.

Таким образом, энергия света запасается в световой фазе фотосинтеза в виде двух типов молекул: восстановленного переносчика НАДФ*Н и макроэргического соединения АТФ. Кислород, выделяющийся при этом, является с точки зрения фотосинтеза побочным продуктом.

Роль световой фазы:

    перенос протонов водорода через систему переносчиков с образованием энергии АТФ;

    образование НАДФ*Н;

    выделение молекулярного кислорода в атмосферу.

Темновая фаза фотосинтеза

Для темновой фазы фотосинтеза обязательными компонентами являются АТФ и НАДФ*Н (из световой фазы), углекислый газ (из атмосферы) и вода. Происходит в строме хлоропласта.

В темновой фазе с участием АТФ и НАДФ*Н происходит восстановление $CO_2$ до глюкозы ($C_6H_{12}O_6$).

Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.

Растение постоянно поглощает углекислый газ из атмосферы. Для этой цели на поверхности листа имеются специальные структуры - устьица. Когда они открываются, $CO_2$ поступает внутрь листа, растворяется в воде и восстанавливается до глюкозы с помощью НАДФ и АТФ.

Избыток глюкозы запасается в виде крахмала . Именно в виде этих органических веществ растение накапливает энергию. Только небольшая их часть остается в листе и используется для его нужд. Остальные же углеводы путешествуют по ситовидным трубкам флоэмы по всему растению и поступают именно туда, где больше всего нужна энергия, например в точки роста.

Цикл Кальвина

Первой реакцией, которая идет без использования энергии, является присоединение $CO_2$ к пентозе, активированной двумя остатками фосфорной кислоты - рибулозобисфосфату.

Образующееся при этом непрочное шестиуглеродное соединение распадается с образованием двух молекул фосфоглицериновой кислоты.

Фосфоглицериновая кислота восстанавливается НАДФ*Н до фосфоглицеринового альдегида с расходованием молекулы АТФ.

Две молекулы фосфоглицеринового альдегида в результате реакций, обратных гликолизу, превращаются в молекулу глюкозы.

Другая часть фосфоглицеринового альдегида в результате ряда превращений дает исходное количество рибулозобисфосфата.

Таким образом, происходит циклический процесс превращения веществ, в каждый оборот такого цикла вовлекается 6 молекул $CO_2$ и образуется одна молекула глюкозы. Этот цикл носит в честь его открывателя название цикла Кальвина (восстановительный пентозофосфатный цикл).

С3- и С4-фотосинтез

В ходе темновой фазы у большинства растений в реакциях цикла Кальвина образуются две молекулы трехуглеродного соединения (3-фосфоглицериновой кислоты), а из них глюкоза. Для образования одной молекулы глюкозы требуется 6 оборотов цикла, 6 $CO_2$, 12 НАДФ*Н и 18 АТФ.

Такой тип фотосинтеза называется С3-фотосинтез.

С4-фотосинтез более эффективен в тропиках, где жаркий климат требует держать устьица закрытыми, что препятствует поступлению $CO_2$ в лист. В результате часть реакций идет не в мезофилле листа, а в клетках обкладки проводящего пучка.

Он требует не 18, а 30 АТФ на синтез 1 молекулы глюкозы.

С4-фотосинтез используют около 7600 видов растений, все относятся к цветковым: многие злаки (61 % видов, в том числе культурные - кукуруза, сахарный тростник и сорго), гвоздичные, маревые, амарантовые, некоторые осоки, сложноцветные, крестоцветные и молочайные.

При CAM-фотосинтезе (англ. Crassulaceae acid metabolism - кислотный метаболизм толстянковых) происходит разделение накопления $C0_2$ и цикла Кальвина не в пространстве, как у С4, а во времени. Ночью в вакуолях клеток по аналогичному вышеописанному механизму при открытых устьицах накапливается малат, днем при закрытых устьицах идет цикл Кальвина. Этот механизм позволяет максимально экономить воду, однако уступает в эффективности и С4, и С3. Он оправдан при стресстолерантной жизненной стратегии (при резко изменяющихся условиях).

Суммарное уравнение фотосинтеза выглядит следующим образом:

6СО 2 + 6Н 2 О+ энергия света → С 6 Н 12 О 6 + 6О 2 .

Значение фотосинтеза

    Фотосинтез является основным источником органического вещества на Земле, то есть обеспечивает живые организмы веществом и энергией.

    Он служит источником кислорода, составляющего 20 % атмосферы Земли. Весь атмосферный кислород образовался в результате фотосинтеза. До появления организмов, осуществляющих фотосинтез с выделением кислорода (около 3 млрд лет назад), атмосфера Земли не содержала этого газа.

хемосинтез

Определение

Хемосинтез - способ автотрофного питания, при котором источником энергии для синтеза органических веществ служит окисление неорганических соединений.

К хемосинтетикам (хемотрофам) относятся только некоторые бактерии и археи.

Явление хемосинтеза было открыто в 1887 г. русским ученым С. Н. Виноградским.

Процесс хемосинтеза, при котором из $CO_2$ образуется органическое вещество, протекает аналогично темновой фазе фотосинтеза, только используется АТФ, полученный не из солнечной энергии, а из энергии химических связей неорганического вещества (при окислении серы, железа, аммиака и т.п.).

Благодаря жизнедеятельности бактерий-хемосинтетиков в природе накапливаются большие запасы селитры и болотной руды.

хемосинтезирующие бактерии

    Нитрифицирующие бактерии получают энергию для син­теза органических веществ, окисляя аммиак до азотистой, а затем до азотной кислоты:

2$NH_{3}$ + 3$O_2$ → 2$HNO_{2}$ + 2$H_{2}0$ + Q;
2$HNO_{2}$ + $O_2$ → 2$HNO_{3}$ + Q.

    Серобактерии получают энергию, окисляя сероводород до сульфатов:

2$H_{2}S$ + $0_2$ → 2$H_{2}0$ + 2S + Q;
S+ 3$O_2$ + 2$H_{2}O$ → 2$H_{2}SO_{4}$ + Q.

    Водородные бактерии получают энергию, окисляя водород до воды:

2$Н_{2}$ + $O_2$ → 2$H_{2}O$ + Q.

    Железобактерии получают энергию, окисляя $Fe^{2+}$ до $Fe^{3+}$:

4$Fe(HCO_{3})2 + 6$H_{2}O$ + $0_2$ → 4$Fe(OH)_{3}$ + 4$H_{2}CO_{3}$ +4$CO_{2}$ + Q.

При этой реакции энергии выделяется немного, поэтому железобактерии окисляют большое количество закисного железа.

Полученная в реакциях окисления неорганических соединений энергия переводится в энергию макроэнергетических связей АТФ.

Роль хемосинтетиков

    участвуют в круговороте серы, азота, железа и др.;

    уничтожают в природе ядовитые вещества: аммиак и сероводород;

    нитрифицирующие бактерии превращают аммиак в нитриты и нитраты, усваиваемые растениями;

    серобактерии используются для очистки сточных вод.

Хемоорганогетеротрофы

Хемоорганогетеротрофы - организмы, использующие для синтеза собственных органических веществ энергию, получаемую при окислении органических веществ пищи в процессе дыхания. К хемоорганогетеротрофам относятся животные, грибы и некоторые бактерии (например, клубеньковые азотфиксирующие бактерии).

$

1. Фотосинтез относится к процессам пластического или энергетического обмена? Почему?

Фотосинтез относится к процессам пластического обмена т.к. сопровождается:

● синтезом сложных органических соединений из более простых веществ, а именно: из неорганических веществ (Н 2 О и СО 2) синтезируется глюкоза (С 6 Н 12 О 6);

● поглощением световой энергии.

2. В каких органоидах растительной клетки происходит фотосинтез? Что представляет собой фотосистема? Какую функцию выполняют фотосистемы?

Фотосинтез происходит в зелёных пластидах – хлоропластах.

Фотосистемы – особые пигмент-белковые комплексы, расположенные в мембранах тилакоидов хлоропластов. Существует два типа фотосистем – фотосистема I и фотосистема II. В состав каждой из них входит светособирающая антенна, образованная молекулами пигментов, реакционный центр и переносчики электронов.

Светособирающая антенна функционирует наподобие воронки: молекулы пигментов поглощают свет и передают всю собранную энергию в реакционный центр, где находится молекула-ловушка, представленная хлорофиллом а. Поглотив энергию, молекула-ловушка переходит в возбуждённое состояние и отдаёт один из своих электронов специальному переносчику, т.е. окисляется. Таким образом, фотосистемы выполняют функцию поглощения света и преобразования световой энергии в химическую.

3. Каково значение фотосинтеза на Земле? Почему без фототрофных организмов существование биосферы было бы невозможным?

Фотосинтез – единственный процесс на планете, в ходе которого происходит преобразование световой энергии Солнца в энергию химических связей синтезируемых органических веществ. При этом исходными соединениями для синтеза органических веществ служат бедные энергией неорганические вещества – углекислый газ и вода.

Образованные в ходе фотосинтеза органические соединения передаются в составе пищи от фототрофных организмов к растительноядным, затем – к хищным, являясь источником энергии и строительным материалом для синтеза других веществ, для образования новых клеток и структур. Следовательно, благодаря деятельности фототрофов удовлетворяются пищевые потребности гетеротрофных организмов.

Кроме того, фотосинтез является источником молекулярного кислорода, необходимого для дыхания большинства живых организмов. Из кислорода сформировался и поддерживается озоновый слой, защищающий живые организмы планеты от губительного воздействия коротковолнового ультрафиолетового излучения. Благодаря фотосинтезу поддерживается относительно постоянное содержание СО 2 в атмосфере.

4. Охарактеризуйте световую и темновую фазы фотосинтеза по плану:

1) место протекания; 2) исходные вещества; 3) происходящие процессы; 4) конечные продукты.

Какие продукты световой фазы фотосинтеза используются в темновой фазе?

Световая фаза фотосинтеза.

1) Место протекания: мембраны тилакоидов.

2) Исходные вещества: Н 2 О, окисленный НАДФ (НАДФ +), АДФ, Н 3 РО 4 . Для протекания световой фазы также необходимы фотосинтетические пигменты (хлорофиллы и др.), однако их нельзя назвать исходными веществами световой фазы.

3) Происходящие процессы: поглощение света фотосистемами, фотолиз воды, транспорт электронов на внешнюю сторону тилакоида и накопление протонов внутри тилакоида (т.е. возникновение электрохимического потенциала на мембране тилакоида), синтез АТФ, восстановление НАДФ + .

4) Конечные продукты: АТФ, восстановленный НАДФ (НАДФ Н+Н +), побочный продукт – молекулярный кислород (О 2).

Темновая фаза фотосинтеза.

1) Место протекания: строма хлоропласта.

2) Исходные вещества: СО 2 , АТФ, восстановленный НАДФ (НАДФ Н+Н +).

3) Происходящие процессы: синтез глюкозы (восстановление СО 2 до органических веществ), в ходе которого происходит гидролиз АТФ и окисление НАДФ Н+Н + .

4) Конечные продукты: глюкоза (С 6 Н 12 О 6), окисленный НАДФ (НАДФ +), АДФ, Н 3 РО 4 .

В темновой фазе фотосинтеза используются такие продукты световой фазы как НАДФ Н+Н + (служит источником атомов водорода для синтеза глюкозы) и АТФ (служит источником энергии для синтеза глюкозы).

5. Сравните фотосинтез и аэробное дыхание. Укажите черты сходства и различия.

Сходство:

● Сложные многостадийные процессы, протекающие с участием ферментов.

● Фотосинтез и заключительный (кислородный) этап аэробного дыхания протекают в двумембранных органоидах (хлоропластах и митохондриях соответственно).

● Окислительно-восстановительные процессы, которые сопровождаются переносом электронов по электрон-транспортным цепям внутренних мембран соответствующих органоидов, возникновением разности потенциалов на этих мембранах, работой АТФ-синтетазы и синтезом АТФ.

Различия:

● Процесс фотосинтеза относится к пластическому обмену т.к. сопровождается синтезом органических веществ из неорганических и происходит с поглощением световой энергии. Процесс аэробного дыхания относится к энергетическому обмену, поскольку происходит расщепление сложных органических веществ и высвобождение заключённой в них энергии.

● Фотосинтез протекает только в клетках фототрофных организмов, а аэробное дыхание – в клетках большинства живых организмов (в том числе и фототрофов).

● Различные исходные вещества и конечные продукты. Если рассматривать суммарные уравнения фотосинтеза и аэробного дыхания, то можно заметить, что продукты фотосинтеза фактически являются исходными веществами для аэробного дыхания и наоборот.

● Переносчиками атомов водорода в процессе дыхания служат НАД и ФАД, в фотосинтезе – НАДФ.

И (или) другие существенные признаки.

6. Человек за сутки потребляет примерно 430 г кислорода. Дерево средней величины поглощает около 30 кг углекислого газа в год. Сколько деревьев необходимо, чтобы обеспечить одного человека кислородом?

● За год человек потребляет: 430 г × 365 = 156 950 г кислорода.

● Рассчитаем химическое количество углекислого газа, поглощаемого за год одним деревом:

М (СО 2) = 12 + 16 × 2 = 44 г/моль. n (СО 2) = m: М = 30 000 г: 44 г/моль ≈ 681,8 моль.

● Суммарное уравнение фотосинтеза:

6СО 2 + 6Н 2 О → С 6 Н 12 О 6 + 6О 2

Поглощение 6 моль углекислого газа сопровождается выделением 6 моль кислорода. Значит, поглощая за год 681,8 моль углекислого газа, дерево выделяет 681,8 моль кислорода.

● Найдём массу кислорода, выделяемого деревом за год:

М (О 2) = 16 × 2 = 32 г/моль. m (О 2) = n × M = 681,8 моль × 32 г/моль = 21 817,6 г

● Определим, сколько деревьев необходимо, чтобы обеспечить одного человека кислородом. Количество деревьев = 156 950 г: 21 817,6 ≈ 7,2 дерева.

Ответ: для того, чтобы обеспечить одного человека кислородом, в среднем понадобится 7,2 дерева (допустимыми ответами будут "8 деревьев" или "7 деревьев").

7. Исследователи разделили растения пшеницы на две группы и выращивали их в лаборатории в одинаковых условиях, за исключением того, что растения первой группы освещали красным светом, а растения второй группы - зелёным. У растений какой группы фотосинтез протекал более интенсивно? С чем это связано?

Фотосинтез протекал более интенсивно у растений, освещаемых красным светом. Это связано с тем, что основные фотосинтетические пигменты – хлорофиллы – интенсивно поглощают красный свет (а также сине-фиолетовую часть спектра), а зелёный отражают, что и обусловливает зелёную окраску этих пигментов.

8*. С помощью какого эксперимента можно доказать, что кислород, выделяющийся при фотосинтезе, образуется именно из молекул воды, а не из молекул углекислого газа или какого-либо другого вещества?

Если для осуществления фотосинтеза использовать воду, меченную радиоактивным кислородом (молекулы вместо стабильного нуклида 16 О содержат радионуклид кислорода), то радиоактивную метку можно будет обнаружить в выделяющемся молекулярном кислороде. Если же использовать для фотосинтеза любое другое вещество, содержащее радионуклид кислорода, то выделяющийся О 2 не будет содержать радиоактивную метку. В частности, радиоактивный кислород, содержащийся в молекулах поглощаемого углекислого газа, будет обнаруживаться в составе синтезированных органических веществ, но не в составе О 2 .

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

Фотосинтез - это процесс синтеза органических веществ из неорганических за счет энергии света. В подавляющем большинстве случаев фотосинтез осуществляют растения с помощью таких клеточных органелл как хлоропласты , содержащих зеленый пигмент хлорофилл .

Если бы растения не были способны к синтезу органики, то почти всем остальным организмам на Земле нечем было бы питаться, так как животные, грибы и многие бактерии не могут синтезировать органические вещества из неорганических. Они лишь поглощают готовые, расщепляют их на более простые, из которых снова собирают сложные, но уже характерные для своего тела.

Так обстоит дело, если говорить о фотосинтезе и его роли совсем кратко. Чтобы понять фотосинтез, нужно сказать больше: какие конкретно неорганические вещества используются, как происходит синтез?

Для фотосинтеза нужны два неорганических вещества - углекислый газ (CO 2) и вода (H 2 O). Первый поглощается из воздуха надземными частями растений в основном через устьица. Вода - из почвы, откуда доставляется в фотосинтезирующие клетки проводящей системой растений. Также для фотосинтеза нужна энергия фотонов (hν), но их нельзя отнести к веществу.

В общей сложности в результате фотосинтеза образуется органическое вещество и кислород (O 2). Обычно под органическим веществом чаще всего имеют в виду глюкозу (C 6 H 12 O 6).

Органические соединения большей частью состоят из атомов углерода, водорода и кислорода. Именно они содержатся в углекислом газе и воде. Однако при фотосинтезе происходит выделение кислорода. Его атомы берутся из воды.

Кратко и обобщенно уравнение реакции фотосинтеза принято записывать так:

6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2

Но это уравнение не отражает сути фотосинтеза, не делает его понятным. Посмотрите, хотя уравнение сбалансированно, в нем общее количество атомов в свободном кислороде 12. Но мы сказали, что они берутся из воды, а там их только 6.

На самом деле фотосинтез протекает в две фазы. Первая называется световой , вторая - темновой . Такие названия обусловлены тем, что свет нужен только для световой фазы , темновая фаза независима от его наличия, но это не значит, что она идет в темноте. Световая фаза протекает на мембранах тилакоидов хлоропласта , темновая - в строме хлоропласта.

В световую фазу связывания CO 2 не происходит. Происходит лишь улавливание солнечной энергии хлорофилльными комплексами, запасание ее в АТФ , использование энергии на восстановление НАДФ до НАДФ*H 2 . Поток энергии от возбужденного светом хлорофилла обеспечивается электронами, передающимися по электрон-транспортной цепи ферментов, встроенных в мембраны тилакоидов.

Водород для НАДФ берется из воды, которая под действием солнечного света разлагается на атомы кислорода, протоны водорода и электроны. Этот процесс называется фотолизом . Кислород из воды для фотосинтеза не нужен. Атомы кислорода из двух молекул воды соединяются с образованием молекулярного кислорода. Уравнение реакции световой фазы фотосинтеза кратко выглядит так:

H 2 O + (АДФ+Ф) + НАДФ → АТФ + НАДФ*H 2 + ½O 2

Таким образом, выделение кислорода происходит в световую фазу фотосинтеза. Количество молекул АТФ, синтезированных из АДФ и фосфорной кислоты, приходящихся на фотолиз одной молекулы воды, может быть различным: одна или две.

Итак, из световой фазы в темновую поступают АТФ и НАДФ*H 2 . Здесь энергия первого и восстановительная сила второго тратятся на связывание углекислого газа. Этот этап фотосинтеза невозможно объяснить просто и кратко, потому что он протекает не так, что шесть молекул CO 2 объединяются с водородом, высвобождаемым из молекул НАДФ*H 2 , и образуется глюкоза:

6CO 2 + 6НАДФ*H 2 →С 6 H 12 O 6 + 6НАДФ
(реакция идет с затратой энергии АТФ, которая распадается на АДФ и фосфорную кислоту).

Приведенная реакция – лишь упрощение для облегчения понимания. На самом деле молекулы углекислого газа связываются по одной, присоединяются к уже готовому пятиуглеродному органическому веществу. Образуется неустойчивое шестиуглеродное органическое вещество, которое распадается на трехуглеродные молекулы углевода. Часть этих молекул используется на ресинтез исходного пятиуглеродного вещества для связывания CO 2 . Такой ресинтез обеспечивается циклом Кальвина . Меньшая часть молекул углевода, включающего три атома углерода, выходит из цикла. Уже из них и других веществ синтезируются все остальные органические вещества (углеводы, жиры, белки).

То есть на самом деле из темновой фазы фотосинтеза выходят трехуглеродные сахара, а не глюкоза.

Фотосинтез представляет собой совокупность процессов формирования световой энергии в энергию химических связей органических веществ с участием фотосинтетических красящих веществ.

Такой тип питания характерен для растений, прокариот и некоторых видов одноклеточных эукариот.

При природном синтезе углерод и вода во взаимодействии со светом преобразуются в глюкозу и свободный кислород:

6CO2 + 6H2O + световая энергия → C6H12O6 + 6O2

Современная физиология растений под понятием фотосинтеза понимает фотоавтотрофную функцию, которая является совокупностью процессов поглощения, превращения и применения квантов световой энергии в разных несамопроизвольных реакциях, включая преобразование углекислого газа в органику.

Фазы

Фотосинтез у растений происходит в листьях через хлоропласты - полуавтономные двухмембранные органеллы, относящиеся к классу пластид. С плоской формой листовых пластин обеспечивается качественное поглощение и полное использование световой энергии и углекислого газа. Вода, необходимая для природного синтеза, поступает от корней через водопроводящую ткань. Газообмен происходит с помощью диффузии через устьица и частично через кутикулу.

Хлоропласты заполнены бесцветной стромой и пронизаны ламеллами, которые при соединении друг с другом образуют тилакоиды. Именно в них и происходит фотосинтез. Цианобактерии сами собой представляют хлоропласты, поэтому аппарат для природного синтеза в них не выделен в отдельную органеллу.

Фотосинтез протекает при участии пигментов , которыми обычно выступают хлорофиллы. Некоторые организмы содержат другой пигмент - каротиноид или фикобилин. Прокариоты обладают пигментом бактериохлорофиллом, причем данные организмы не выделяют кислород по завершении природного синтеза.

Фотосинтез проходит две фазы - световую и темновую. Каждая из них характеризуется определенными реакциями и взаимодействующими веществами. Рассмотрим подробнее процесс фаз фотосинтеза.

Световая

Первая фаза фотосинтеза характеризуется образованием высокоэнергетических продуктов, которыми являются АТФ, клеточный источник энергии, и НАДФ, восстановитель. В конце стадии в качестве побочного продукта образуется кислород. Световая стадия происходит обязательно с солнечным светом.

Процесс фотосинтеза протекает в мембранах тилакоидов при участии белков-переносчиков электронов, АТФ-синтетазы и хлорофилла (или другого пигмента).

Функционирование электрохимических цепей, по которым происходит передача электронов и частично протонов водорода, образуется в сложных комплексах, формирующихся пигментами и ферментами.

Описание процесса световой фазы:

  1. При попадании солнечного света на листовые пластины растительных организмов происходит возбуждение электронов хлорофилла в структуре пластин;
  2. В активном состоянии частицы выходят из пигментной молекулы и попадают на внешнюю сторону тилакоида, заряженную отрицательно. Это происходит одновременно с окислением и последующим восстановлением молекул хлорофилла, которые отбирают очередные электроны у поступившей в листья воды;
  3. Затем происходит фотолиз воды с образованием ионов, которые отдают электроны и преобразуются в радикалы OH, способные участвовать в реакциях и в дальнейшем;
  4. Затем эти радикалы соединяются, образуя молекулы воды и свободный кислород, выходящий в атмосферу;
  5. Тилакоидная мембрана приобретает с одной стороны положительный заряд за счет иона водорода, а с другой - отрицательный за счет электронов;
  6. С достижением разницы в 200 мВ между сторонами мембраны протоны проходят через фермент АТФ-синтетазу, что приводит к превращению АДФ в АТФ (процесс фосфорилирования);
  7. С освободившимся из воды атомным водородом происходит восстановление НАДФ + в НАДФ·Н2;

Тогда как свободный кислород в процессе реакций выходит в атмосферу, АТФ и НАДФ·Н2 участвуют в темновой фазе природного синтеза.

Темновая

Обязательный компонент для этой стадии - углекислый газ , который растения постоянно поглощают из внешней среды через устьица в листьях. Процессы темновой фазы проходят в строме хлоропласта. Поскольку на данном этапе не требуется много солнечной энергии и будет достаточно получившихся в ходе световой фазы АТФ и НАДФ·Н2, реакции в организмах могут протекать и днем, и ночью. Процессы на этой стадии происходят быстрее, чем на предыдущей.

Совокупность всех процессов, происходящих в темновой фазе, представлена в виде своеобразной цепочки последовательных преобразований углекислоты, поступившей из внешней среды:

  1. Первой реакцией в такой цепочке является фиксация углекислого газа. Наличие фермента РиБФ-карбоксилаза способствует быстрому и плавному протеканию реакции, в результате которой происходит образование шестиуглеродного соединения, распадающегося на 2 молекулы фосфоглицериновой кислоты;
  2. Затем происходит довольно сложный цикл, включающий еще определенное число реакций, по завершении которых фосфоглицериновая кислота преобразуется в природный сахар - глюкозу. Этот процесс называют циклом Кальвина;

Вместе с сахаром также происходит формирование жирных кислот, аминокислот, глицерина и нуклеотидов.

Суть фотосинтеза

Из таблицы сравнений световой и темновой фаз природного синтеза можно вкратце описать суть каждой из них. Световая фаза происходит в гранах хлоропласта с обязательным включением в реакции световой энергии. В реакциях задействованы такие компоненты как белки, переносящие электроны, АТФ-синтетаза и хлорофилл, которые при взаимодействии с водой образуют свободный кислород, АТФ и НАДФ·Н2. Для темновой фазы, происходящей в строме хлоропласта, солнечный свет не является обязательным. Получившиеся на прошлом этапе АТФ и НАДФ·Н2 при взаимодействии с углекислотой формируют природный сахар (глюкозу).

Как видно из вышеизложенного, фотосинтез предстает довольно сложным и многоступенчатым явлением, включающим множество реакций, в которых задействуются разные вещества. В итоге природного синтеза получается кислород, необходимый для дыхания живых организмов и защиты их от ультрафиолетовой радиации с помощью образования озонового слоя.